skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The International Atomic Energy Agency International Doubly Labelled Water Database: Aims, Scope and Procedures
Award ID(s):
1824466
PAR ID:
10138138
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Annals of Nutrition and Metabolism
Volume:
75
Issue:
2
ISSN:
0250-6807
Page Range / eLocation ID:
114 to 118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. null (Ed.)
  3. Chambers, Erin W; Gudmundsson, Joachim (Ed.)
    Let ℬ be a set of n unit balls in ℝ³. We present a linear-size data structure for storing ℬ that can determine in O^*(n^{1/2}) time whether a query line intersects any ball of ℬ and report all k such balls in additional O(k) time. The data structure can be constructed in O(n log n) time. (The O^*(⋅) notation hides subpolynomial factors, e.g., of the form O(n^ε), for arbitrarily small ε > 0, and their coefficients which depend on ε.) We also consider the dual problem: Let ℒ be a set of n lines in ℝ³. We preprocess ℒ, in O^*(n²) time, into a data structure of size O^*(n²) that can determine in O^*(1) time whether a query unit ball intersects any line of ℒ, or report all k such lines in additional O(k) time. 
    more » « less
  4. Cabello, Sergio; Chen, Danny Z. (Ed.)
    In this paper, we consider the Visibility Graph Recognition and Reconstruction problems in the context of terrains. Here, we are given a graph G with labeled vertices v₀, v₁, …, v_{n-1} such that the labeling corresponds with a Hamiltonian path H. G also may contain other edges. We are interested in determining if there is a terrain T with vertices p₀, p₁, …, p_{n-1} such that G is the visibility graph of T and the boundary of T corresponds with H. G is said to be persistent if and only if it satisfies the so-called X-property and Bar-property. It is known that every "pseudo-terrain" has a persistent visibility graph and that every persistent graph is the visibility graph for some pseudo-terrain. The connection is not as clear for (geometric) terrains. It is known that the visibility graph of any terrain T is persistent, but it has been unclear whether every persistent graph G has a terrain T such that G is the visibility graph of T. There actually have been several papers that claim this to be the case (although no formal proof has ever been published), and recent works made steps towards building a terrain reconstruction algorithm for any persistent graph. In this paper, we show that there exists a persistent graph G that is not the visibility graph for any terrain T. This means persistence is not enough by itself to characterize the visibility graphs of terrains, and implies that pseudo-terrains are not stretchable. 
    more » « less