skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The 1st International Workshop on Machine Reasoning: International Machine Reasoning Conference (MRC 2021)
Award ID(s):
1910154
PAR ID:
10284713
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
WSDM '21: Proceedings of the 14th ACM International Conference on Web Search and Data Mining
Page Range / eLocation ID:
1161 to 1162
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The current crisis in global natural resource management makes it imperative that we better leverage the vast data sources associated with taxonomic entities (such as recognized species of plants and animals), which are known collectively as biodiversity data. However, these data pose considerable challenges for artificial intelligence: while growing rapidly in volume, they remain highly incomplete for many taxonomic groups, often show conflicting signals from different sources, and are multi-modal and therefore constantly changing in structure. In this paper, we motivate, describe, and present a novel workflow combining machine learning and automated reasoning, to discover patterns of taxonomic identity and change - i.e. “taxonomic intelligence” - leading to scalable and broadly impactful AI solutions within the bio-data realm. 
    more » « less
  2. null (Ed.)
  3. We present ATOMIC, an atlas of everyday commonsense reasoning, organized through 877k textual descriptions of inferential knowledge. Compared to existing resources that center around taxonomic knowledge, ATOMIC focuses on inferential knowledge organized as typed if-then relations with variables (e.g., "if X pays Y a compliment, then Y will likely return the compliment"). We propose nine if-then relation types to distinguish causes vs. effects, agents vs. themes, voluntary vs. involuntary events, and actions vs. mental states. By generatively training on the rich inferential knowledge described in ATOMIC, we show that neural models can acquire simple commonsense capabilities and reason about previously unseen events. Experimental results demonstrate that multitask models that incorporate the hierarchical structure of if-then relation types lead to more accurate inference compared to models trained in isolation, as measured by both automatic and human evaluation. 
    more » « less