Abstract Cancer is a global health problem that needs effective treatment strategies. Conventional treatments for solid-tumor cancers are unsatisfactory because they cause unintended harm to healthy tissues and are susceptible to cancer cell resistance. Nanoparticle-mediated photothermal therapy is a minimally invasive treatment for solid-tumor cancers that has immense promise as a standalone therapy or adjuvant to other treatments like chemotherapy, immunotherapy, or radiotherapy. To maximize the success of photothermal therapy, light-responsive nanoparticles can be camouflaged with cell membranes to endow them with unique biointerfacing capabilities that reduce opsonization, prolong systemic circulation, and improve tumor delivery through enhanced passive accumulation or homotypic targeting. This ensures a sufficient dose of photoresponsive nanoparticles arrives at tumor sites to enable their complete thermal ablation. This review summarizes the state-of-the-art in cell membrane camouflaged nanoparticles for photothermal cancer therapy and provides insights to the path forward for clinical translation.
more »
« less
Evaluating Cellular Lethality for Treatment of Melanoma by Photothermal Therapy
Introduction: The American Cancer Society predicted that approximately 96,480 people will be diagnosed with melanoma skin cancer this year, and 7,230 of them will die [1]. Minimally-invasive alternatives for melanoma treatment are a clinical need, and a continued unmet need exists for combinatorial therapies with limited toxicity and/or resistance profiles. Photothermal therapy (PTT) can be used as a non-invasive treatment by delivering targeted nanoparticles and a laser source (typically in the near-infrared range) to the tumor site. We propose to use a biodegradable nanoparticle platform based in polymers to reduce the toxic risks. Our goal is to evaluate the cellular lethality of nanoparticles on melanoma cells as a response to dosimetry using an in vitro model.
more »
« less
- Award ID(s):
- 1757885
- PAR ID:
- 10138558
- Date Published:
- Journal Name:
- 2019 BMES Conference Proceedings - REU Abstract Accepted Poster
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)In this study, we demonstrated that the widely used cold atmospheric plasma (CAP) jet could significantly inhibit the growth of melanoma cells using a contactless treatment method, The flow rate of helium gas was a key operational parameter to modulate electromagnetic (EM) effect on melanoma cells. Metal sheets with different sizes could be used as a strategy to control the strength of EM effect. More attractive, the EM effect from CAP could penetrate glass/polystyrene barriers as thick as 7 mm. All these discoveries presented the profound non-invasive nature of a physically based CAP treatment, which provided a solid foundation for CAP-based cutaneous/subcutaneous tumor therapy.more » « less
-
Abstract Objective:Magnetic fluid hyperthermia (MFH) is a still experimental technique found to have a potential application in the treatment of cancer. The method aims to reach around 41 °C–47 °C in the tumor site by exciting magnetic nanoparticles with an externally applied alternating magnetic field (AMF), where cell death is expected to occur. Applying AMFs with high spatial resolution is still a challenge. The AMFs from current and prospective MFH applicators cover relatively large areas; being not suitable for patients having metallic implants near the treatment area. Thus, there will be a clinical need for smaller magnetic field applicators. To this end, a laparoscopic induction heater (LIH) and a transrectal induction heater (TRIH) were developed.Methods:Miniature ‘pancake’ coils were wound and inserted into 3D printed enclosures. Ovarian (SKOV-3, A2780) and prostate (PC-3, LNCaP) cancer cell lines were used to evaluate the instruments’ capabilities in killing cancer cellsin vitro, using Synomag®-D nanoparticles as the heat mediators. NIH3T3 normal cell lines were also used with both devices to observe if these cells tolerated the conditions applied.Results:Magnetic field intensities reached by the LIH and TRIH were 42.6 kA m−1at 326 kHz and 26.3 kA m−1at 303 kHz, respectively. Temperatures reached in the samples were 41 °C by the LIH and 43 °C by the TRIH. Both instruments successfully accomplished killing cancer cells, with minimal effects on normal cells.Conclusion:This work presents the first line of handheld medical induction heaters and have the potential to be a complement to existing cancer therapies.Significance:These instruments could enable the development of MFH modalities that will facilitate the clinical translation of this thermal treatment.more » « less
-
Boron neutron capture therapy (BNCT) is a binary cancer treatment that involves the irradiation of 10B-containing tumors with low-energy neutrons (thermal or epithermal). The alpha particles and recoiling Li nuclei that are produced in the 10B-capture nuclear reaction are high-linear-energy transfer particles that destroy boron-loaded tumor cells; therefore, BNCT has the potential to be a localized therapeutic modality. Two boron-delivery agents have been used in clinical trials of BNCT in patients with malignant brain tumors, cutaneous melanoma, or recurrent tumors of the head and neck region, demonstrating the potential of BNCT in the treatment of difficult cancers. A variety of potentially highly effective boron-delivery agents have been synthesized in the past four decades and tested in cells and animal models. These include boron-containing nucleosides, peptides, proteins, polyamines, porphyrins, liposomes, monoclonal antibodies, and nanoparticles of various types. The most promising agents are multi-functional boronated molecules and nanoparticles functionalized with tumor cell-targeting moieties that increase their tumor selectivity and contain a radiolabel or fluorophore to allow quantification of 10B-biodistribution and treatment planning. This review discusses multi-functional boron agents reported in the last decade, but their full potential can only be ascertained after their evaluation in BNCT clinical trials.more » « less
-
null (Ed.)The advent of immune checkpoint therapy for metastatic skin cancer has greatly improved patient survival. However, most skin cancer patients are refractory to checkpoint therapy, and furthermore, the intra-immune cell signaling driving response to checkpoint therapy remains uncharacterized. When comparing the immune transcriptome in the tumor microenvironment of melanoma and basal cell carcinoma (BCC), we found that the presence of memory B cells and macrophages negatively correlate in both cancers when stratifying patients by their response, with memory B cells more present in responders. Moreover, inhibitory immune signaling mostly decreases in melanoma responders and increases in BCC responders. We further explored the relationships between macrophages, B cells and response to checkpoint therapy by developing a stochastic differential equation model which qualitatively agrees with the data analysis. Our model predicts BCC to be more refractory to checkpoint therapy than melanoma and predicts the best qualitative ratio of memory B cells and macrophages for successful treatment.more » « less
An official website of the United States government

