Abstract Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable clinical success in the treatment of hematological malignancies. However, producing these bespoke cancer‐killing cells is a complicated ex vivo process involving leukapheresis, artificial T cell activation, and CAR construct introduction. The activation step requires the engagement of CD3/TCR and CD28 and is vital for T cell transfection and differentiation. Though antigen‐presenting cells (APCs) facilitate activation in vivo, ex vivo activation relies on antibodies against CD3 and CD28 conjugated to magnetic beads. While effective, this artificial activation adds to the complexity of CAR T cell production as the beads must be removed prior to clinical implementation. To overcome this challenge, this work develops activating lipid nanoparticles (aLNPs) that mimic APCs to combine the activation of magnetic beads and the transfection capabilities of LNPs. It is shown that aLNPs enable one‐step activation and transfection of primary human T cells with the resulting mRNA CAR T cells reducing tumor burden in a murine xenograft model, validating aLNPs as a promising platform for the rapid production of mRNA CAR T cells.
more »
« less
Development of handheld induction heaters for magnetic fluid hyperthermia applications and in-vitro evaluation on ovarian and prostate cancer cell lines
Abstract Objective:Magnetic fluid hyperthermia (MFH) is a still experimental technique found to have a potential application in the treatment of cancer. The method aims to reach around 41 °C–47 °C in the tumor site by exciting magnetic nanoparticles with an externally applied alternating magnetic field (AMF), where cell death is expected to occur. Applying AMFs with high spatial resolution is still a challenge. The AMFs from current and prospective MFH applicators cover relatively large areas; being not suitable for patients having metallic implants near the treatment area. Thus, there will be a clinical need for smaller magnetic field applicators. To this end, a laparoscopic induction heater (LIH) and a transrectal induction heater (TRIH) were developed.Methods:Miniature ‘pancake’ coils were wound and inserted into 3D printed enclosures. Ovarian (SKOV-3, A2780) and prostate (PC-3, LNCaP) cancer cell lines were used to evaluate the instruments’ capabilities in killing cancer cellsin vitro, using Synomag®-D nanoparticles as the heat mediators. NIH3T3 normal cell lines were also used with both devices to observe if these cells tolerated the conditions applied.Results:Magnetic field intensities reached by the LIH and TRIH were 42.6 kA m−1at 326 kHz and 26.3 kA m−1at 303 kHz, respectively. Temperatures reached in the samples were 41 °C by the LIH and 43 °C by the TRIH. Both instruments successfully accomplished killing cancer cells, with minimal effects on normal cells.Conclusion:This work presents the first line of handheld medical induction heaters and have the potential to be a complement to existing cancer therapies.Significance:These instruments could enable the development of MFH modalities that will facilitate the clinical translation of this thermal treatment.
more »
« less
- Award ID(s):
- 2016495
- PAR ID:
- 10401207
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Biomedical Physics & Engineering Express
- Volume:
- 9
- Issue:
- 3
- ISSN:
- 2057-1976
- Page Range / eLocation ID:
- Article No. 035010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Pancreatic cancer is usually asymptomatic in the early stages; the 5-y survival rate is around 9%; and there is a lack of effective treatment. Here we show that SSEA-4 is more expressed in all pancreatic cancer cell lines examined but not detectable in normal pancreatic cells; and high expression of SSEA-4 or the key enzymes B3GALT5 + ST3GAL2 associated with SSEA-4 biosynthesis significantly lowers the overall survival rate. To evaluate potential new treatments for pancreatic cancer, homogeneous antibodies with a well-defined Fc glycan for optimal effector functions and CAR-T cells with scFv construct designed to target SSEA-4 were shown highly effective against pancreatic cancer in vitro and in vivo. This was further supported by the finding that a subpopulation of natural killer (NK) cells isolated by the homogeneous antibody exhibited enhancement in cancer-cell killing activity compared to the unseparated NK cells. These results indicate that targeting SSEA-4 by homologous antibodies or CAR-T strategies can effectively inhibit cancer growth, suggesting SSEA-4 as a potential immunotherapy target for treating pancreatic disease.more » « less
-
Cancer diagnostics is an important field of cancer recovery and survival with many expensive procedures needed to administer the correct treatment. Machine Learning (ML) approaches can help with the diagnostic prediction from circulating tumor cells in liquid biopsy or from a primary tumor in solid biopsy. After predicting the metastatic potential from a deep learning model, doctors in a clinical setting can administer a safe and correct treatment for a specific patient. This paper investigates the use of deep convolutional neural networks for predicting a specific cancer cell line as a tool for label free identification. Specifically, deep learning strategies for weight initialization and performance metrics are described, with transfer learning and the accuracy metric utilized in this work. The equipment used for prediction involves brightfield microscopy without the use of chemical labels, advanced instruments, or time-consuming biological techniques, giving an advantage over current diagnostic methods. In the procedure, three different binary datasets of well-known cancer cell lines were collected, each having a difference in metastatic potential. Two different classification models were adopted (EfficientNetV2 and ResNet-50) with the analysis given for each stage in the ML architecture. The training results for each model and dataset are provided and systematically compared. We found that the test set accuracy showed favorable performance for both ML models with EfficientNetV2 accuracy reaching up to 99%. These test results allowed EfficientNetV2 to outperform ResNet-50 at an average percent increase of 3.5% for each dataset. The high accuracy obtained from the predictions demonstrates that the system can be retrained on a large-scale clinical dataset.more » « less
-
Abstract Noninvasive manipulation of cell signaling is critical in basic neuroscience research and in developing therapies for neurological disorders and psychiatric conditions. Here, the wireless force‐induced stimulation of primary neuronal circuits through mechanotransduction mediated by magnetic microdiscs (MMDs) under applied low‐intensity and low‐frequency alternating magnetic fields (AMFs), is described. MMDs are fabricated by top‐down lithography techniques that allow for cost‐effective mass production of biocompatible MMDs with high saturation and zero magnetic magnetic moment at remanence. MMDs are utilized as transducers of AMFs into mechanical forces. When MMDs are exposed to primary rat neuronal circuits, their magneto‐mechanical actuation triggers the response of specific mechanosensitive ion channels expressed on the cell membranes activating ≈50% of hippocampal and ≈90% of cortical neurons subjected to the treatment. Mechanotransduction is confirmed by the inhibition of mechanosensitive transmembrane channels with Gd3+. Mechanotransduction mediated by MMDs cause no cytotoxic effect to neuronal cultures. This technology fulfills the requirements of cell‐type specificity and weak magnetic fields, two limiting factors in the development of noninvasive neuromodulation therapies and clinical equipment design. Moreover, high efficiency and long‐lasting stimulations are successfully achieved. This research represents a fundamental step forward for magneto‐mechanical control of neural activity using disc‐shaped micromaterials with tailored magnetic properties.more » « less
-
Abstract Over the past decade, magnetoelectric nanoparticles (MENPs) have proven effective in generating local electric fields in response to stimulation with a magnetic field. The applications of such nanoparticles are many and varied, with examples of prior research including use for on-demand drug release, wireless modulation and recording of neural activity, and organic dye degradation. This study investigates the potential for organic dye degradation to be used as a rapid and efficient screening tool to detect the magnetoelectric effect of MENPs, and how the results of such a test mirror the antiproliferative effect of said nanoparticles. Trypan blue was selected as an azo dye to test for dye degradation. Vials of the dye were treated with CoFe2O4@BaTiO3 core-shell MENPs of varying characteristics, both with and without concurrent 1-kHz 250-Oe magnetic stimulation. Dye degradation was measured using ultraviolet (UV)-vis spectroscopy. Dye degradation efficacy varied with varying nanoparticle synthesis parameters. As controls, nanoparticles of the same composition, but with an insignificant magnetoelectric effect, were used. SKOV-3 ovarian cancer cells were then treated with the same nanoparticles, and viability was measured with an adenosine triphosphate (ATP) assay. These measurements show a decrease in cell viability up to 60.3% of control (p = 0.0052), which mirrored the efficacy of dye degradation of up to 69.8% (p = 0.0037) in each of the particle variants, demonstrating the value of azo dye degradation as a simple screening test for MENPs, and showing the potential of MENPs used as wirelessly controlled nanodevices to allow targeted electric field-based treatments.more » « less
An official website of the United States government
