This article introduces a new over-the-air calibration method for millimeter wave phased arrays. Our method leverages the channel estimation process which is a fundamental part of any wireless communication system. By performing the channel estimation while changing the phase of an antenna element, the response of the element is obtained. Unlike prior work, our method includes all the system components and thus, spans the full chain. By overriding channel estimation, no additional circuits are required, and online calibration is possible without pausing the communication process. We tested our method on an eight-element-phased array at 24GHz which we designed and fabricated in PCB for verification.
more »
« less
Online Millimeter Wave Phased Array Calibration Based on Channel Estimation
This paper proposes a new over-the-air (OTA) calibration method for millimeter wave phased arrays. Our method leverages the channel estimation process which is a fundamental part of any wireless communication system. By performing the channel estimation while changing the phase of an antenna element, the phase response of the element can be estimated. The relative phase of the phased array can also be obtained by collecting all the estimated phase responses with a shared reference state. Hence, the phase mismatches of the phased array can be resolved. Unlike prior work, our calibration method embraces all the array components such as power-divider, phase shifter, amplifier and antenna and thus, spans the full chain. By overriding channel estimation, our proposed technique does not require any additional circuits for calibration. Furthermore, the calibration can be performed online without the need to pause the communication. We tested our method on an eight element phased array at 24GHz which we designed and fabricated in PCB for verification. The measured beam patterns prove the viability of our proposed method.
more »
« less
- Award ID(s):
- 1750725
- PAR ID:
- 10138696
- Date Published:
- Journal Name:
- 2019 IEEE 37th VLSI Test Symposium (VTS)
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A novel approach to linear array antennas with adaptive inter-element spacing is presented for the first time. The main idea is based upon electronically displacing the phase center location of the antenna elements, which determine their relative coordinates in the array configuration. This is realized by employing dual-mode microstrip patch antennas as a constitutive element, whose phase center location can be displaced from its physical center by simultaneously exciting two modes. The direction and the amount of displacement is controlled by the amplitude and phase of the modes at the element level. This in turn facilitates reconfiguring the inter-element spacing at the array level. For instance, a uniformly-spaced array could be electronically transformed into a non-uniform one without any mechanical means. The proposed idea is demonstrated in two- and three-element linear antenna arrays. The technique has the potential to control the radiation characteristics such as sidelobe levels, position of the nulls, and the beamwidths in small arrays, which are useful for adaptively controlling the array performance in emerging wireless communication systems and radars.more » « less
-
This paper presents a magnetic sensor based autotracking method for a phased array based wireless power transfer system to be implemented in neuromodulation applications. This method is proposed to track the position of the receiver(placed on a freely moving animal) and transmit the microwave signal with a focused beam to the target receiver. The coordinate locations of the target are obtained from the magnetic sensor and converted into phase information for the phased array. The system is constructed by a 2.4 GHz near-field 4×4 phased array transmitter antenna with 4-bit phase shifters. The phased array TX antenna steers the beam from -5° to -155° in the θ plane. The magnetic sensor can detect the location of the receiver and the in this steering range. The process of tracking the the target and focusing the beam has been evaluated by simulation.more » « less
-
Chaotic antenna array (CAA)s are phased antenna arrays in which individual elements are randomized in their array position, shape, and feed line length. These randomizations generate spatially dependent large scale phase errors (with respect to antenna elements of a uniform array) that enables distinct physical layer security solutions not available to other wireless systems. Herein, a preliminary study on one such novel method, developed to combat eavesdropping is presented. In the proposed method, the CAA equipped transmitter intentionally distorts its signals based on its own array factor (AF) which includes the phase errors. This distortion significantly hampers demodulation at an eavesdropper, while a legitimate receiver that is aware of the phase errors can compensate for the added distortion.more » « less
-
This paper presents modeling and optimization of the steering range of a microstrip planar phased array antenna to steer the unidirectional near-field focused beam towards a certain direction. This antenna can be implemented in headstage-based neural stimulation system and wireless recording system for optogenetic neuromodulation applications. The proposed phased-array antenna consists of sixteen elements that are designed to provide a uniform power transmission over the 27 cm×23 cm×16 cm rat behavioral cage area. The proposed transmitter (TX) antenna implements a near-field-based wireless power transmission system operating at 2.4 GHz frequency. The phased array antenna steers the beam from -30° to 60° in the elevation plane by feeding the individual elements with different phases using four 4-bit phase shifters. A design analysis of the beam-steering approach of the phased array antenna is presented and the corresponding simulation and measurement results are included in this paper.more » « less