Low-loss volume modes in a lamellar hyperbolic metamaterial slab
                        
                    
    
            We have studied, both theoretically and experimentally, the excitation of volume modes in a lamellar metal/dielectric metamaterial with hyperbolic dispersion. The highly efficient light penetration through tens of metamaterial layers is consistent with a relatively low propagation loss. The volume modes were found to be highly sensitive to the surface roughness of the layers, which can be a detrimental factor in device applications. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1856515
- PAR ID:
- 10138943
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Journal of the Optical Society of America B
- Volume:
- 37
- Issue:
- 4
- ISSN:
- 0740-3224; JOBPDE
- Format(s):
- Medium: X Size: Article No. 1065
- Size(s):
- Article No. 1065
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            Electromechanical metamaterials have been the focus of many recent studies for use in simultaneous energy harvesting and vibration control. Metamaterials with quasiperiodic patterns possess many useful topological properties that make them a good candidate for study. However, it is currently unknown what effect electromechanical coupling may have on the topological bandgaps and localized edge modes of a quasiperiodic metamaterial. In this paper, we study a quasiperiodic metamaterial with electromechanical resonators to investigate the effect on its bandgaps and localized vibration modes. We derive here the analytical dispersion surfaces of the proposed metamaterial. A semi-infinite system is also simulated numerically to validate the analytical results and show the band structure for different quasiperiodic patterns, load resistors, and electromechanical coupling coefficients. The topological nature of the bandgaps is detailed through an estimation of the integrated density of states. Furthermore, the presence of topological edge modes is determined through numerical simulation of the energy harvested from the system. The results indicate that quasiperiodic metamaterials with electromechanical resonators can be used for effective energy harvesting without changes in the bandgap topology for weak electromechanical coupling.more » « less
- 
            null (Ed.)Recently, an electromechanical metamaterial with integrated resonant circuit elements was developed that enables on-demand tailoring of the operating frequency and interface routes for topological wave transmission. However, limitations to the operating frequency region still exist, and a full exploration of the adaptive characteristics of the topological electromechanical metamaterial has yet to be undertaken. To advance the state of the art, this study investigates the ability to enhance the range of operating frequencies for topological wave transmission in a piezoelectric metamaterial by the reconfiguration of lattice symmetries and connection of negative capacitance circuitry. In addition, the capability to modify the interface mode localization is analyzed. The plane wave expansion method is utilized to define a working frequency region for protected topological wave transmission by evaluating a local topological charge. Numerical simulations verify the existence of topologically protected interface modes and illuminate how the localization and shape of these modes can be altered via external circuit parameters. Results show that the reconfiguration of the lattice structure and connection to negative capacitance circuity enhances the operating frequency bandwidth and interface mode localization control, greatly expanding the adaptive metamaterial capabilities.more » « less
- 
            Abstract Mechanical metamaterials are architected manmade materials that allow for unique behaviors not observed in nature, making them promising candidates for a wide range of applications. Existing metamaterials lack tunability as their properties can only be changed to a limited extent after the fabrication. Herein, a new magneto‐mechanical metamaterial is presented that allows great tunability through a novel concept of deformation mode branching. The architecture of this new metamaterial employs an asymmetric joint design using hard‐magnetic soft active materials that permits two distinct actuation modes (bending and folding) under opposite‐direction magnetic fields. The subsequent application of mechanical compression leads to the deformation mode branching where the metamaterial architecture transforms into two distinctly different shapes, which exhibit very different deformations and enable great tunability in properties such as mechanical stiffness and acoustic bandgaps. Furthermore, this metamaterial design can be incorporated with magnetic shape memory polymers with global stiffness tunability, which also allows for the global shift of the acoustic behaviors. The combination of magnetic and mechanical actuations, as well as shape memory effects, impart wide tunable properties to a new paradigm of metamaterials.more » « less
- 
            We develop a framework to understand the mechanics of metamaterial sheets on curved surfaces. Here we have constructed a continuum elastic theory of mechanical metamaterials by introducing an auxiliary, scalar gauge-like field that absorbs the strain along the soft mode and projects out the stiff ones. We propose a general form of the elastic energy of a mechanism based metamaterial sheet and specialize to the cases of dilational metamaterials and shear metamaterials conforming to positively and negatively curved substrates in the Föppl–Von Kármán limit of small strains. We perform numerical simulations of these systems and obtain good agreement with our analytical predictions. This work provides a framework that can be easily extended to explore non-linear soft modes in metamaterial elasticity in future.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
