- Award ID(s):
- 1661568
- Publication Date:
- NSF-PAR ID:
- 10299733
- Journal Name:
- ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
- Page Range or eLocation-ID:
- SMASIS2020-2292
- Sponsoring Org:
- National Science Foundation
More Like this
-
Many engineering applications leverage metamaterials to achieve elastic wave control. To enhance the performance and expand the functionalities of elastic waveguides, the concepts of electronic transport in topological insulators have been applied to elastic metamaterials. Initial studies showed that topologically protected elastic wave transmission in mechanical metamaterials could be realized that is immune to backscattering and undesired localization in the presence of defects or disorder. Recent studies have developed tunable topological elastic metamaterials to maximize performance in the presence of varying external conditions, adapt to changing operating requirements, and enable new functionalities such as a programmable wave path. However, amore »
-
A substantial challenge in guiding elastic waves is the presence of reflection and scattering at sharp edges, defects, and disorder. Recently, mechanical topological insulators have sought to overcome this challenge by supporting back-scattering resistant wave transmission. In this paper, we propose and experimentally demonstrate a reconfigurable electroacoustic topological insulator exhibiting an analog to the quantum valley Hall effect (QVHE). Using programmable switches, this phononic structure allows for rapid reconfiguration of domain walls and thus the ability to control back-scattering resistant wave propagation along dynamic interfaces for phonons lying in static and finite-frequency regimes. Accordingly, a graphene-like polyactic acid (PLA) layermore »
-
In hybrid materials, a high-symmetry lattice is decorated by low-symmetry building blocks. The result is an aperiodic solid that hosts many nearly-degenerate disordered configurations. Using the perovskite methylammonium lead iodide (MAPbI 3 ) as a prototype hybrid material, we show that the inherent disorder renders the conventional phonon picture of transport insufficient. Ab initio molecular dynamics and analysis of the spectral energy density reveal that vibrational carriers simultaneously exhibit features of both classical phonons and of carriers typically found in glasses. The low frequency modes retain elements of acoustic waves but exhibit extremely short lifetimes of only a few tensmore »
-
Originating with the discovery of the quantum Hall effect (QHE) in condensed matter physics, topological order has been receiving increased attention also for classical wave phenomena. Topological protection enables efficient and robust signal transport; mechanical topological insulators (TIs), in particular, are easy to fabricate and exhibit interfacial wave transport with minimal dissipation, even in the presence of sharp edges, defects, or disorder. Here, we report the experimental demonstration of a phononic crystal Floquet TI (FTI). Hexagonal arrays of circular piezoelectric disks bonded to a PLA substrate, shunted through negative electrical capacitance, and manipulated by external integrated circuits, provide the requiredmore »
-
Recent advances in audio-visual augmented reality (AR) and virtual reality (VR) demands 1) high speed (>10Mbps) data transfer among wearable devices around the human body with 2) low transceiver (TRX) power consumption for longer lifetime, especially as communication energy/b is often orders of magnitude higher than computation energy/switching. While WiFi can transmit compressed video (HD 30fps, compressed @6-12Mbps), it consumes 50-to-400mW power. Bluetooth, on the other hand, is not designed for video transfer. New mm-Wave links can support the required bandwidth but do not support ultra-low-power (<1mW). In recent years, Human-Body Communication (HBC) [1]–[6] has emerged as a promising low-powermore »