skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Random Dictators with a Random Referee: Constant Sample Complexity Mechanisms for Social Choice
We study social choice mechanisms in an implicit utilitarian framework with a metric constraint, where the goal is to minimize Distortion, the worst case social cost of an ordinal mechanism relative to underlying cardinal utilities. We consider two additional desiderata: Constant sample complexity and Squared Distortion. Constant sample complexity means that the mechanism (potentially randomized) only uses a constant number of ordinal queries regardless of the number of voters and alternatives. Squared Distortion is a measure of variance of the Distortion of a randomized mechanism.Our primary contribution is the first social choice mechanism with constant sample complexity and constant Squared Distortion (which also implies constant Distortion). We call the mechanism Random Referee, because it uses a random agent to compare two alternatives that are the favorites of two other random agents. We prove that the use of a comparison query is necessary: no mechanism that only elicits the top-k preferred alternatives of voters (for constant k) can have Squared Distortion that is sublinear in the number of alternatives. We also prove that unlike any top-k only mechanism, the Distortion of Random Referee meaningfully improves on benign metric spaces, using the Euclidean plane as a canonical example. Finally, among top-1 only mechanisms, we introduce Random Oligarchy. The mechanism asks just 3 queries and is essentially optimal among the class of such mechanisms with respect to Distortion.In summary, we demonstrate the surprising power of constant sample complexity mechanisms generally, and just three random voters in particular, to provide some of the best known results in the implicit utilitarian framework.  more » « less
Award ID(s):
1637418
PAR ID:
10139077
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
33
ISSN:
2159-5399
Page Range / eLocation ID:
1893 to 1900
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study higher statistical moments of Distortion for randomized social choice in a metric implicit utilitarian model. The Distortion of a social choice mechanism is the expected approximation factor with respect to the optimal utilitarian social cost (OPT). The k'th moment of Distortion is the expected approximation factor with respect to the k'th power of OPT. We consider mechanisms that elicit alternatives by randomly sampling voters for their favorite alternative. We design two families of mechanisms that provide constant (with respect to the number of voters and alternatives) k'th moment of Distortion using just k samples if all voters can then participate in a vote among the proposed alternatives, or 2k-1 samples if only the sampled voters can participate. We also show that these numbers of samples are tight. Such mechanisms deviate from a constant approximation to OPT with probability that drops exponentially in the number of samples, independent of the total number of voters and alternatives. We conclude with simulations on real-world Participatory Budgeting data to qualitatively complement our theoretical insights. 
    more » « less
  2. We study the problem of designing voting rules that take as input the ordinal preferences of n agents over a set of m alternatives and output a single alternative, aiming to optimize the overall happiness of the agents. The input to the voting rule is each agent’s ranking of the alternatives from most to least preferred, yet the agents have more refined (cardinal) preferences that capture the intensity with which they prefer one alternative over another. To quantify the extent to which voting rules can optimize over the cardinal preferences given access only to the ordinal ones, prior work has used the distortion measure, i.e., the worst-case approximation ratio between a voting rule’s performance and the best performance achievable given the cardinal preferences. The work on the distortion of voting rules has been largely divided into two “worlds”: utilitarian distortion and metric distortion. In the former, the cardinal preferences of the agents correspond to general utilities and the goal is to maximize a normalized social welfare. In the latter, the agents’ cardinal preferences correspond to costs given by distances in an underlying metric space and the goal is to minimize the (unnormalized) social cost. Several deterministic and randomized voting rules have been proposed and evaluated for each of these worlds separately, gradually improving the achievable distortion bounds, but none of the known voting rules perform well in both worlds simultaneously. In this work, we prove that one can in fact achieve the “best of both worlds” by designing new voting rules, both deterministic and randomized, that simultaneously achieve near-optimal distortion guarantees in both distortion worlds. We also prove that this positive result does not generalize to the case where the voting rule is provided with the rankings of only the top-t alternatives of each agent, for t < m, and study the extent to which such best-of-both-worlds guarantees can be achieved. 
    more » « less
  3. We study social choice rules under the utilitarian distortion framework, with an additional metric assumption on the agents' costs over the alternatives. In this approach, these costs are given by an underlying metric on the set of all agents plus alternatives. Social choice rules have access to only the ordinal preferences of agents but not the latent cardinal costs that induce them. Distortion is then defined as the ratio between the social cost (typically the sum of agent costs) of the alternative chosen by the mechanism at hand, and that of the optimal alternative chosen by an omniscient algorithm. The worst-case distortion of a social choice rule is, therefore, a measure of how close it always gets to the optimal alternative without any knowledge of the underlying costs. Under this model, it has been conjectured that Ranked Pairs, the well-known weighted-tournament rule, achieves a distortion of at most 3 (Anshelevich et al. 2015). We disprove this conjecture by constructing a sequence of instances which shows that the worst-case distortion of Ranked Pairs is at least 5. Our lower bound on the worst-case distortion of Ranked Pairs matches a previously known upper bound for the Copeland rule, proving that in the worst case, the simpler Copeland rule is at least as good as Ranked Pairs. And as long as we are limited to (weighted or unweighted) tournament rules, we demonstrate that randomization cannot help achieve an expected worst-case distortion of less than 3. Using the concept of approximate majorization within the distortion framework, we prove that Copeland and Randomized Dictatorship achieve low constant factor fairness-ratios (5 and 3 respectively), which is a considerable generalization of similar results for the sum of costs and single largest cost objectives. In addition to all of the above, we outline several interesting directions for further research in this space. 
    more » « less
  4. We provide mechanisms and new metric distortion bounds for line-up elections. In such elections, a set of n voters, k candidates, and ell positions are all located in a metric space. The goal is to choose a set of candidates and assign them to different positions, so as to minimize the total cost of the voters. The cost of each voter consists of the distances from itself to the chosen candidates (measuring how much the voter likes the chosen candidates, or how similar it is to them), as well as the distances from the candidates to the positions they are assigned to (measuring the fitness of the candidates for their positions). Our mechanisms, however, do not know the exact distances, and instead produce good outcomes while only using a smaller amount of information, resulting in small distortion.We consider several different types of information: ordinal voter preferences, ordinal position preferences, and knowing the exact locations of candidates and positions, but not those of voters. In each of these cases, we provide constant distortion bounds, thus showing that only a small amount of information is enough to form outcomes close to optimum in line-up elections. 
    more » « less
  5. We consider a social choice setting in which agents and alternatives are represented by points in a metric space, and the cost of an agent for an alternative is the distance between the corresponding points in the space. The goal is to choose a single alternative to (approximately) minimize the social cost (cost of all agents) or the maximum cost of any agent, when only limited information about the preferences of the agents is given. Previous work has shown that the best possible distortion one can hope to achieve is 3 when access to the ordinal preferences of the agents is given, even when the distances between alternatives in the metric space are known. We improve upon this bound of 3 by designing deterministic mechanisms that exploit a bit of cardinal information. We show that it is possible to achieve distortion 1+sqrt(2) by using the ordinal preferences of the agents, the distances between alternatives, and a threshold approval set per agent that contains all alternatives for whom her cost is within an appropriately chosen factor of her cost for her most-preferred alternative. We show that this bound is the best possible for any deterministic mechanism in general metric spaces, and also provide improved bounds for the fundamental case of a line metric. 
    more » « less