skip to main content


Title: The Distortion of Distributed Metric Social Choice
We consider a social choice setting with agents that are partitioned into disjoint groups, and have metric preferences over a set of alternatives. Our goal is to choose a single alternative aiming to optimize various objectives that are functions of the distances between agents and alternatives in the metric space, under the constraint that this choice must be made in a distributed way: The preferences of the agents within each group are first aggregated into a representative alternative for the group, and then these group representatives are aggregated into the final winner. Deciding the winner in such a way naturally leads to loss of efficiency, even when complete information about the metric space is available. We provide a series of (mostly tight) bounds on the distortion of distributed mechanisms for variations of well-known objectives, such as the (average) total cost and the maximum cost, and also for new objectives that are particularly appropriate for this distributed setting and have not been studied before.  more » « less
Award ID(s):
2006286 1527497
NSF-PAR ID:
10342299
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Artificial intelligence
Volume:
308
ISSN:
0004-3702
Page Range / eLocation ID:
103713
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study social choice rules under the utilitarian distortion framework, with an additional metric assumption on the agents' costs over the alternatives. In this approach, these costs are given by an underlying metric on the set of all agents plus alternatives. Social choice rules have access to only the ordinal preferences of agents but not the latent cardinal costs that induce them. Distortion is then defined as the ratio between the social cost (typically the sum of agent costs) of the alternative chosen by the mechanism at hand, and that of the optimal alternative chosen by an omniscient algorithm. The worst-case distortion of a social choice rule is, therefore, a measure of how close it always gets to the optimal alternative without any knowledge of the underlying costs. Under this model, it has been conjectured that Ranked Pairs, the well-known weighted-tournament rule, achieves a distortion of at most 3 (Anshelevich et al. 2015). We disprove this conjecture by constructing a sequence of instances which shows that the worst-case distortion of Ranked Pairs is at least 5. Our lower bound on the worst-case distortion of Ranked Pairs matches a previously known upper bound for the Copeland rule, proving that in the worst case, the simpler Copeland rule is at least as good as Ranked Pairs. And as long as we are limited to (weighted or unweighted) tournament rules, we demonstrate that randomization cannot help achieve an expected worst-case distortion of less than 3. Using the concept of approximate majorization within the distortion framework, we prove that Copeland and Randomized Dictatorship achieve low constant factor fairness-ratios (5 and 3 respectively), which is a considerable generalization of similar results for the sum of costs and single largest cost objectives. In addition to all of the above, we outline several interesting directions for further research in this space. 
    more » « less
  2. We study the problem of designing voting rules that take as input the ordinal preferences of n agents over a set of m alternatives and output a single alternative, aiming to optimize the overall happiness of the agents. The input to the voting rule is each agent’s ranking of the alternatives from most to least preferred, yet the agents have more refined (cardinal) preferences that capture the intensity with which they prefer one alternative over another. To quantify the extent to which voting rules can optimize over the cardinal preferences given access only to the ordinal ones, prior work has used the distortion measure, i.e., the worst-case approximation ratio between a voting rule’s performance and the best performance achievable given the cardinal preferences. The work on the distortion of voting rules has been largely divided into two “worlds”: utilitarian distortion and metric distortion. In the former, the cardinal preferences of the agents correspond to general utilities and the goal is to maximize a normalized social welfare. In the latter, the agents’ cardinal preferences correspond to costs given by distances in an underlying metric space and the goal is to minimize the (unnormalized) social cost. Several deterministic and randomized voting rules have been proposed and evaluated for each of these worlds separately, gradually improving the achievable distortion bounds, but none of the known voting rules perform well in both worlds simultaneously. In this work, we prove that one can in fact achieve the “best of both worlds” by designing new voting rules, both deterministic and randomized, that simultaneously achieve near-optimal distortion guarantees in both distortion worlds. We also prove that this positive result does not generalize to the case where the voting rule is provided with the rankings of only the top-t alternatives of each agent, for t < m, and study the extent to which such best-of-both-worlds guarantees can be achieved. 
    more » « less
  3. In many real world situations, collective decisions are made using voting and, in scenarios such as committee or board elections, employing voting rules that return multiple winners. In multi-winner approval voting (AV), an agent submits a ballot consisting of approvals for as many candidates as they wish, and winners are chosen by tallying up the votes and choosing the top-k candidates receiving the most approvals. In many scenarios, an agent may manipulate the ballot they submit in order to achieve a better outcome by voting in a way that does not reflect their true preferences. In complex and uncertain situations, agents may use heuristics instead of incurring the additional effort required to compute the manipulation which most favors them. In this paper, we examine voting behavior in single-winner and multi-winner approval voting scenarios with varying degrees of uncertainty using behavioral data obtained from Mechanical Turk. We find that people generally manipulate their vote to obtain a better outcome, but often do not identify the optimal manipulation. There are a number of predictive models of agent behavior in the social choice and psychology literature that are based on cognitively plausible heuristic strategies. We show that the existing approaches do not adequately model our real-world data. We propose a novel model that takes into account the size of the winning set and human cognitive constraints; and demonstrate that this model is more effective at capturing real-world behaviors in multi-winner approval voting scenarios. 
    more » « less
  4. We study social choice mechanisms in an implicit utilitarian framework with a metric constraint, where the goal is to minimize Distortion, the worst case social cost of an ordinal mechanism relative to underlying cardinal utilities. We consider two additional desiderata: Constant sample complexity and Squared Distortion. Constant sample complexity means that the mechanism (potentially randomized) only uses a constant number of ordinal queries regardless of the number of voters and alternatives. Squared Distortion is a measure of variance of the Distortion of a randomized mechanism.Our primary contribution is the first social choice mechanism with constant sample complexity and constant Squared Distortion (which also implies constant Distortion). We call the mechanism Random Referee, because it uses a random agent to compare two alternatives that are the favorites of two other random agents. We prove that the use of a comparison query is necessary: no mechanism that only elicits the top-k preferred alternatives of voters (for constant k) can have Squared Distortion that is sublinear in the number of alternatives. We also prove that unlike any top-k only mechanism, the Distortion of Random Referee meaningfully improves on benign metric spaces, using the Euclidean plane as a canonical example. Finally, among top-1 only mechanisms, we introduce Random Oligarchy. The mechanism asks just 3 queries and is essentially optimal among the class of such mechanisms with respect to Distortion.In summary, we demonstrate the surprising power of constant sample complexity mechanisms generally, and just three random voters in particular, to provide some of the best known results in the implicit utilitarian framework. 
    more » « less
  5. A core tension in the operations of online marketplaces is between segmentation (wherein platforms can increase revenue by segmenting the market into ever smaller sub-markets) and thickness (wherein the size of the sub-market affects the utility experienced by an agent). An important example of this is in dynamic online marketplaces, where buyers and sellers, in addition to preferences for different matches, also have finite patience (or deadlines) for being matched. We formalize this trade-off via a novel optimization problem that we term as 'Two-sided Facility Location': we consider a market wherein agents arrive at nodes embedded in an underlying metric space, where the distance between a buyer and seller captures the quality of the corresponding match. The platform posts prices and wages at the nodes, and opens a set of virtual clearinghouses where agents are routed for matching. To ensure high match-quality, the platform imposes a distance constraint between an agent and its clearinghouse; to ensure thickness, the platform requires the flow to any clearinghouse be at least a pre-specified lower bound. Subject to these constraints, the goal of the platform is to maximize the social surplus subject to weak budget balance, i.e., profit being non-negative. Our work characterizes the complexity of this problem by providing both hardness results as well as algorithms for this setting; in particular, we present an algorithm that for any constant ε > 0 yields a (1 + ε ) approximation for the gains from trade, while relaxing the match quality (i.e., maximum distance of any match) by a constant factor. 
    more » « less