skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Markets Beyond Nash Welfare for Leontief Utilities
We study the allocation of divisible goods to competing agents via a market mechanism, focusing on agents with Leontief utilities. The majority of the economics and mechanism design literature has focused on \emph{linear} prices, meaning that the cost of a good is proportional to the quantity purchased. Equilibria for linear prices are known to be exactly the maximum Nash welfare allocations. \emph{Price curves} allow the cost of a good to be any (increasing) function of the quantity purchased. We show that price curve equilibria are not limited to maximum Nash welfare allocations with two main results. First, we show that an allocation can be supported by strictly increasing price curves if and only if it is \emph{group-domination-free}. A similarly characterization holds for weakly increasing price curves. We use this to show that given any allocation, we can compute strictly (or weakly) increasing price curves that support it (or show that none exist) in polynomial time. These results involve a connection to the \emph{agent-order matrix} of an allocation, which may have other applications. Second, we use duality to show that in the bandwidth allocation setting, any allocation maximizing a CES welfare function can be supported by price curves.  more » « less
Award ID(s):
1637418
PAR ID:
10139078
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Web and Internet Economics
Page Range / eLocation ID:
340
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the problem of allocating divisible items among multiple agents, and consider the setting where any agent is allowed to introduce {\emph diversity constraints} on the items they are allocated. We motivate this via settings where the items themselves correspond to user ad slots or task workers with attributes such as race and gender on which the principal seeks to achieve demographic parity. We consider the following question: When an agent expresses diversity constraints into an allocation rule, is the allocation of other agents hurt significantly? If this happens, the cost of introducing such constraints is disproportionately borne by agents who do not benefit from diversity. We codify this via two desiderata capturing {\em robustness}. These are {\emph no negative externality} -- other agents are not hurt -- and {\emph monotonicity} -- the agent enforcing the constraint does not see a large increase in value. We show in a formal sense that the Nash Welfare rule that maximizes product of agent values is {\emph uniquely} positioned to be robust when diversity constraints are introduced, while almost all other natural allocation rules fail this criterion. We also show that the guarantees achieved by Nash Welfare are nearly optimal within a widely studied class of allocation rules. We finally perform an empirical simulation on real-world data that models ad allocations to show that this gap between Nash Welfare and other rules persists in the wild. 
    more » « less
  2. We study the problem of allocating indivisible items to budget-constrained agents, aiming to provide fairness and efficiency guarantees. Specifically, our goal is to ensure that the resulting allocation is envy-free up to any item (EFx) while minimizing the amount of inefficiency that this needs to introduce. We first show that there exist two-agent problem instances for which no EFx allocation is Pareto-efficient. We, therefore, turn to approximation and use the (Pareto-efficient) maximum Nash welfare allocation as a benchmark. For two-agent instances, we provide a procedure that always returns an EFx allocation while achieving the best possible approximation of the optimal Nash social welfare that EFx allocations can achieve. For the more complicated case of three-agent instances, we provide a procedure that guarantees EFx, while achieving a constant approximation of the optimal Nash social welfare for any number of items. 
    more » « less
  3. We study the problem of distributing a set of indivisible goods among agents with additive valuations in afairmanner. The fairness notion under consideration is envy-freeness up toanygood (EFX). Despite significant efforts by many researchers for several years, the existence of EFX allocations has not been settled beyond the simple case of two agents. In this article, we show constructively that an EFX allocation always exists for three agents. Furthermore, we falsify the conjecture of Caragiannis et al. by showing an instance with three agents for which there is a partial EFX allocation (some goods are not allocated) with higher Nash welfare than that of any complete EFX allocation. 
    more » « less
  4. null (Ed.)
    Mechanisms with money are commonly designed under the assumption that agents are quasi-linear, meaning they have linear disutility for spending money. We study the implications when agents with non-linear (specifically, convex) disutility for payments participate in mechanisms designed for quasi-linear agents. We first show that any mechanism that is truthful for quasi-linear buyers has a simple best response function for buyers with non-linear disutility from payments, in which each bidder simply scales down her value for each potential outcome by a fixed factor, equal to her target return on investment (ROI). We call such a strategy ROI-optimal. We prove the existence of a Nash equilibrium in which agents use ROI-optimal strategies for a general class of allocation problems. Motivated by online marketplaces, we then focus on simultaneous second-price auctions for additive bidders and show that all ROI-optimal equilibria in this setting achieve constant-factor approximations to suitable welfare and revenue benchmarks. 
    more » « less
  5. Large-scale online recommendation systems must facilitate the allocation of a limited number of items among competing users while learning their preferences from user feedback. As a principled way of incorporating market constraints and user incentives in the design, we consider our objectives to be two-fold: maximal social welfare with minimal instability. To maximize social welfare, our proposed framework enhances the quality of recommendations by exploring allocations that optimistically maximize the rewards. To minimize instability, a measure of users' incentives to deviate from recommended allocations, the algorithm prices the items based on a scheme derived from the Walrasian equilibria. Though it is known that these equilibria yield stable prices for markets with known user preferences, our approach accounts for the inherent uncertainty in the preferences and further ensures that the users accept their recommendations under offered prices. To the best of our knowledge, our approach is the first to integrate techniques from combinatorial bandits, optimal resource allocation, and collaborative filtering to obtain an algorithm that achieves sub-linear social welfare regret as well as sub-linear instability. Empirical studies on synthetic and real-world data also demonstrate the efficacy of our strategy compared to approaches that do not fully incorporate all these aspects. 
    more » « less