skip to main content


Title: Markets Beyond Nash Welfare for Leontief Utilities
We study the allocation of divisible goods to competing agents via a market mechanism, focusing on agents with Leontief utilities. The majority of the economics and mechanism design literature has focused on \emph{linear} prices, meaning that the cost of a good is proportional to the quantity purchased. Equilibria for linear prices are known to be exactly the maximum Nash welfare allocations. \emph{Price curves} allow the cost of a good to be any (increasing) function of the quantity purchased. We show that price curve equilibria are not limited to maximum Nash welfare allocations with two main results. First, we show that an allocation can be supported by strictly increasing price curves if and only if it is \emph{group-domination-free}. A similarly characterization holds for weakly increasing price curves. We use this to show that given any allocation, we can compute strictly (or weakly) increasing price curves that support it (or show that none exist) in polynomial time. These results involve a connection to the \emph{agent-order matrix} of an allocation, which may have other applications. Second, we use duality to show that in the bandwidth allocation setting, any allocation maximizing a CES welfare function can be supported by price curves.  more » « less
Award ID(s):
1637418
NSF-PAR ID:
10139078
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Web and Internet Economics
Page Range / eLocation ID:
340
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the problem of allocating divisible items among multiple agents, and consider the setting where any agent is allowed to introduce {\emph diversity constraints} on the items they are allocated. We motivate this via settings where the items themselves correspond to user ad slots or task workers with attributes such as race and gender on which the principal seeks to achieve demographic parity. We consider the following question: When an agent expresses diversity constraints into an allocation rule, is the allocation of other agents hurt significantly? If this happens, the cost of introducing such constraints is disproportionately borne by agents who do not benefit from diversity. We codify this via two desiderata capturing {\em robustness}. These are {\emph no negative externality} -- other agents are not hurt -- and {\emph monotonicity} -- the agent enforcing the constraint does not see a large increase in value. We show in a formal sense that the Nash Welfare rule that maximizes product of agent values is {\emph uniquely} positioned to be robust when diversity constraints are introduced, while almost all other natural allocation rules fail this criterion. We also show that the guarantees achieved by Nash Welfare are nearly optimal within a widely studied class of allocation rules. We finally perform an empirical simulation on real-world data that models ad allocations to show that this gap between Nash Welfare and other rules persists in the wild. 
    more » « less
  2. null (Ed.)
    Mechanisms with money are commonly designed under the assumption that agents are quasi-linear, meaning they have linear disutility for spending money. We study the implications when agents with non-linear (specifically, convex) disutility for payments participate in mechanisms designed for quasi-linear agents. We first show that any mechanism that is truthful for quasi-linear buyers has a simple best response function for buyers with non-linear disutility from payments, in which each bidder simply scales down her value for each potential outcome by a fixed factor, equal to her target return on investment (ROI). We call such a strategy ROI-optimal. We prove the existence of a Nash equilibrium in which agents use ROI-optimal strategies for a general class of allocation problems. Motivated by online marketplaces, we then focus on simultaneous second-price auctions for additive bidders and show that all ROI-optimal equilibria in this setting achieve constant-factor approximations to suitable welfare and revenue benchmarks. 
    more » « less
  3. A public decision-making problem consists of a set of issues, each with multiple possible alternatives, and a set of competing agents, each with a preferred alternative for each issue. We study adaptations of market economies to this setting, focusing on binary issues. Issues have prices, and each agent is endowed with artificial currency that she can use to purchase probability for her preferred alternatives (we allow randomized outcomes). We first show that when each issue has a single price that is common to all agents, market equilibria can be arbitrarily bad. This negative result motivates a different approach. We present a novel technique called "pairwise issue expansion", which transforms any public decision-making instance into an equivalent Fisher market, the simplest type of private goods market. This is done by expanding each issue into many goods: one for each pair of agents who disagree on that issue. We show that the equilibrium prices in the constructed Fisher market yield a "pairwise pricing equilibrium" in the original public decision-making problem which maximizes Nash welfare. More broadly, pairwise issue expansion uncovers a powerful connection between the public decision-making and private goods settings; this immediately yields several interesting results about public decisions markets, and furthers the hope that we will be able to find a simple iterative voting protocol that leads to near-optimum decisions. 
    more » « less
  4. We study the problem of approximating maximum Nash social welfare (NSW) when allocatingmindivisible items amongnasymmetric agents with submodular valuations. TheNSWis a well-established notion of fairness and efficiency, defined as the weighted geometric mean of agents’ valuations. For special cases of the problem with symmetric agents and additive(-like) valuation functions, approximation algorithms have been designed using approaches customized for these specific settings, and they fail to extend to more general settings. Hence, no approximation algorithm with a factor independent ofmwas known either for asymmetric agents with additive valuations or for symmetric agents beyond additive(-like) valuations before this work.

    In this article, we extend our understanding of theNSWproblem to far more general settings. Our main contribution is two approximation algorithms for asymmetric agents with additive and submodular valuations. Both algorithms are simple to understand and involve non-trivial modifications of a greedy repeated matchings approach. Allocations of high-valued items are done separately by un-matching certain items and re-matching them by different processes in both algorithms. We show that these approaches achieve approximation factors ofO(n) andO(nlogn) for additive and submodular cases, independent of the number of items. For additive valuations, our algorithm outputs an allocation that also achieves the fairness property of envy-free up to one item (EF1).

    Furthermore, we show that theNSWproblem under submodular valuations is strictly harder than all currently known settings with an\(\frac{\mathrm{e}}{\mathrm{e}-1}\)factor of the hardness of approximation, even for constantly many agents. For this case, we provide a different approximation algorithm that achieves a factor of\(\frac{\mathrm{e}}{\mathrm{e}-1}\), hence resolving it completely.

     
    more » « less
  5. We study the problem of approximating maximum Nash social welfare (NSW) when allocating m indivisible items among n asymmetric agents with submodular valuations. The NSW is a well-established notion of fairness and efficiency, defined as the weighted geometric mean of agents' valuations. For special cases of the problem with symmetric agents and additive(-like) valuation functions, approximation algorithms have been designed using approaches customized for these specific settings, and they fail to extend to more general settings. Hence, no approximation algorithm with factor independent of m is known either for asymmetric agents with additive valuations or for symmetric agents beyond additive(-like) valuations. In this paper, we extend our understanding of the NSW problem to far more general settings. Our main contribution is two approximation algorithms for asymmetric agents with additive and submodular valuations respectively. Both algorithms are simple to understand and involve non-trivial modifications of a greedy repeated matchings approach. Allocations of high valued items are done separately by un-matching certain items and re-matching them, by processes that are different in both algorithms. We show that these approaches achieve approximation factors of O(n) and O(n log n) for additive and submodular case respectively, which is independent of the number of items. For additive valuations, our algorithm outputs an allocation that also achieves the fairness property of envy-free up to one item (EF1). Furthermore, we show that the NSW problem under submodular valuations is strictly harder than all currently known settings with an e/(e-1) factor of the hardness of approximation, even for constantly many agents. For this case, we provide a different approximation algorithm that achieves a factor of e/(e-1), hence resolving it completely. 
    more » « less