skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: First-Order Phase Transition in Liquid Ag to the Heterogenous G-Phase
A molten metal is an atomic liquid that lacks directional bonding and is free from chemical ordering effects. Experimentally, liquid metals can be undercooled by up to ∼20% of their melting temperature but crystallize rapidly in subnanosecond time scales at deeper undercooling. To address this limited metastability with respect to crystallization, we employed molecular dynamics simulations to study the thermodynamics and kinetics of the glass transition and crystallization in deeply undercooled liquid Ag. We present direct evidence that undercooled liquid Ag undergoes a first-order configurational freezing transition from the high-temperature homogeneous disordered liquid phase (L) to a metastable, heterogeneous, configura-tionally ordered state that displays elastic rigidity with a persistent and finite shear modulus, μ. We designate this ordered state as the G-phase and conclude it is a metastable non-crystalline phase. We show that the L−G transition occurs by nucleation of the G-phase from the L-phase. Both te L- and G-phases are metastable because both ultimately crystallize. The observed first-order transition is reversible: the G-phase displays a first-order melting transition to the L-phase at a coexistence temperature, TG,M. We develop a thermodynamic description of the two phases and their coexistence boundary.  more » « less
Award ID(s):
1710744
PAR ID:
10139158
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The journal of physical chemistry letters
Volume:
11
ISSN:
1948-7185
Page Range / eLocation ID:
632-645
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The authors recently reported that undercooled liquid Ag and Ag–Cu alloys both exhibit a first order phase transition from the homogeneous liquid (L-phase) to a heterogeneous solid-like G-phase under isothermal evolution. Here, we report a similar L–G transition and heterogenous G-phase in simulations of liquid Cu–Zr bulk glass. The thermodynamic description and kinetic features (viscosity) of the L-G-phase transition in Cu–Zr simulations suggest it corresponds to experimentally reported liquid–liquid phase transitions in Vitreloy 1 (Vit1) and other Cu–Zr-bearing bulk glass forming alloys. The Cu–Zr G-phase has icosahedrally ordered cores versus fcc/hcp core structures in Ag and Ag–Cu with a notably smaller heterogeneity length scale Λ . We propose the L–G transition is a phenomenon in metallic liquids associated with the emergence of elastic rigidity. The heterogeneous core–shell nano-composite structure likely results from accommodating strain mismatch of stiff core regions by more compliant intervening liquid-like medium. 
    more » « less
  2. Abstract Controlling crystallization kinetics is key to overcome the temperature–time dilemma in phase change materials employed for data storage. While the amorphous phase must be preserved for more than 10 years at slightly above room temperature to ensure data integrity, it has to crystallize on a timescale of several nanoseconds following a moderate temperature increase to near 2/3Tmto compete with other memory devices such as dynamic random access memory (DRAM). Here, a calorimetric demonstration that this striking variation in kinetics involves crystallization occurring either from the glassy or from the undercooled liquid state is provided. Measurements of crystallization kinetics of Ge2Sb2Te5with heating rates spanning over six orders of magnitude reveal a fourfold decrease in Kissinger activation energy for crystallization upon the glass transition. This enables rapid crystallization above the glass transition temperatureTg. Moreover, highly unusual for glass‐forming systems, crystallization at conventional heating rates is observed more than 50 °C belowTg, where the atomic mobility should be vanishingly small. 
    more » « less
  3. Many phase change materials (PCMs) are found to crystallize without exhibiting a glass transition endotherm upon reheating. In this paper, we review experimental evidence revealing that these PCMs and likely other hyperquenched molecular and metallic systems can crystallize from the glassy state when reheated at a standard rate. Among these evidences, PCMs annealed below the glass transition temperature T g exhibit slower crystallization kinetics despite an increase in the number of sub-critical nuclei that should promote the crystallization speed. Flash calorimetry uncovers the glass transition endotherm hidden by crystallization and reveals a distinct change in kinetics when crystallization switches from the glassy to the supercooled liquid state. The resulting T g value also rationalizes the presence of the pre- T g relaxation exotherm ubiquitous of hyperquenched systems. Finally, the shift in crystallization temperature during annealing exhibits a non-exponential decay that is characteristic of structural relaxation in the glass. Modeling using a modified Turnbull equation for nucleation rate supports the existence of sub- T g fast crystallization and emphasizes the benefit of a fragile-to-strong transition for PCM applications due to a reduction in crystallization at low temperature (improved data retention) and increasing its speed at high temperature (faster computing). 
    more » « less
  4. An experimental study of the configurational thermodynamics for a series of near-eutectic Pt80-xCuxP20bulk metallic glass-forming alloys is reported where 14 <x< 27. The undercooled liquid alloys exhibit very high fragility that increases asxdecreases, resulting in an increasingly sharp glass transition. With decreasingx, the extrapolated Kauzmann temperature of the liquid,TK, becomes indistinguishable from the conventionally defined glass transition temperature,Tg. Forx< 17, the observed liquid configurational enthalpy vs.Tdisplays a marked discontinuous drop or latent heat at a well-defined freezing temperature,Tgm. The entropy drop for this first-order liquid/glass transition is approximately two-thirds of the entropy of fusion of the crystallized eutectic alloy. BelowTgm, the configurational entropy of the frozen glass continues to fall rapidly, approaching that of the crystallized eutectic solid in the low T limit. The so-called Kauzmann paradox, with negative liquid entropy (vs. the crystalline state), is averted and the liquid configurational entropy appears to comply with the third law of thermodynamics. Despite their ultrafragile character, the liquids atx= 14 and 16 are bulk glass formers, yielding fully glassy rods up to 2- and 3-mm diameter on water quenching in thin-wall silica tubes. The low Cu content alloys are definitive examples of glasses that exhibit first-order melting. 
    more » « less
  5. Crystallization from the melt is a critical process governing the properties of semi-crystalline polymeric materials. While structural analyses of melting and crystallization transitions in bulk polymers have been widely reported, in contrast, those in thin polymer films on solid supports have been underexplored. Herein, in situ Raman microscopy and self-modeling curve resolution (SMCR) analysis are applied to investigate the temperature-dependent structural changes in poly(ethylene oxide) (PEO) films during melting and crystallization phase transitions. By resolving complex overlapping sets of spectra, SMCR analysis reveals that the thermal transitions of 50 µm thick PEO films comprise two structural phases: an ordered crystalline phase and a disordered amorphous phase. The ordered structure of the crystalline PEO film entirely disappears as the polymer is heated; conversely, the disordered structure of the amorphous PEO film reverts to the ordered structure as the polymer is cooled. Broadening of the Raman bands was observed in PEO films above the melting temperature (67 °C), while sharpening of bands was observed below the crystallization temperature (45 °C). The temperatures at which these spectral changes occurred were in good agreement with differential scanning calorimetry (DSC) measurements, especially during the melting transition. The results illustrate that in situ Raman microscopy coupled with SMCR analysis is a powerful approach for unraveling complex structural changes in thin polymer films during melting and crystallization processes. Furthermore, we show that confocal Raman microscopy opens opportunities to apply the methodology to interrogate the structural features of PEO or other surface-supported polymer films as thin as 2 µm, a thickness regime beyond the reach of conventional thermal analysis techniques. 
    more » « less