This content will become publicly available on December 22, 2022
- Award ID(s):
- 1710744
- Publication Date:
- NSF-PAR ID:
- 10312303
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 24
- Issue:
- 1
- ISSN:
- 1463-9076
- Sponsoring Org:
- National Science Foundation
More Like this
-
A molten metal is an atomic liquid that lacks directional bonding and is free from chemical ordering effects. Experimentally, liquid metals can be undercooled by up to ∼20% of their melting temperature but crystallize rapidly in subnanosecond time scales at deeper undercooling. To address this limited metastability with respect to crystallization, we employed molecular dynamics simulations to study the thermodynamics and kinetics of the glass transition and crystallization in deeply undercooled liquid Ag. We present direct evidence that undercooled liquid Ag undergoes a first-order configurational freezing transition from the high-temperature homogeneous disordered liquid phase (L) to a metastable, heterogeneous, configura-tionallymore »
-
An experimental study of the configurational thermodynamics for a series of near-eutectic Pt80-
x Cux P20bulk metallic glass-forming alloys is reported where 14 <x < 27. The undercooled liquid alloys exhibit very high fragility that increases asx decreases, resulting in an increasingly sharp glass transition. With decreasingx , the extrapolated Kauzmann temperature of the liquid,T K , becomes indistinguishable from the conventionally defined glass transition temperature,T g . Forx < 17, the observed liquid configurational enthalpy vs.T displays a marked discontinuous drop or latent heat at a well-defined freezing temperature,T gm . The entropy drop for this first-order liquid/glass transition is approximately two-thirds of the entropy of fusion of the crystallized eutectic alloy. BelowT gm ,more » -
The method of surface grating decay has been used to measure surface diffusion in the glasses of two rod-like molecules posaconazole (POS) and itraconazole (ITZ). Although structurally similar antifungal medicines, ITZ forms liquid-crystalline phases while POS does not. Surface diffusion in these systems is significantly slower than in the glasses of quasi-spherical molecules of similar volume when compared at the glass transition temperature T g . Between the two systems, ITZ has slower surface diffusion. These results are explained on the basis of the near-vertical orientation of the rod-like molecules at the surface and their deep penetration into the bulkmore »
-
When aged below the glass transition temperature,
, the density of a glass cannot exceed that of the metastable supercooled liquid (SCL) state, unless crystals are nucleated. The only exception is when another polyamorphic SCL state exists, with a density higher than that of the ordinary SCL. Experimentally, such polyamorphic states and their corresponding liquid–liquid phase transitions have only been observed in network-forming systems or those with polymorphic crystalline states. In otherwise simple liquids, such phase transitions have not been observed, either in aged or vapor-deposited stable glasses, even near the Kauzmann temperature. Here, we report that themore » -
Abstract Much attention has been devoted to water’s metastable phase behavior, including polyamorphism (multiple amorphous solid phases), and the hypothesized liquid-liquid transition and associated critical point. However, the possible relationship between these phenomena remains incompletely understood. Using molecular dynamics simulations of the realistic TIP4P/2005 model, we found a striking signature of the liquid-liquid critical point in the structure of water glasses, manifested as a pronounced increase in long-range density fluctuations at pressures proximate to the critical pressure. By contrast, these signatures were absent in glasses of two model systems that lack a critical point. We also characterized the departure frommore »