skip to main content

Title: Developing a Synthetic Hydrogel for Breast Tissue Engineering
As part of the PI's outreach, a course-based undergraduate research experience engaged undergraduate women in research from examining the literature to identify a gap, formulating a research hypothesis, designing experiments to test the hypothesis, analyzing the data, writing and submitting an abstract and presenting the research to the scientific community. This project was as follows: Current clinical approaches to repair breast damage from cancer resection, injury, or deformity focus on synthetic implants or autologous muscle grafts. While there are drawbacks and benefits to each, neither restore the function lost should the woman desire to nurse children. Tissue engineering methods have the potential to restore breast tissue volume and function that circumvent the reconstructive limitations of contemporary surgical procedures. There is a large body of research on breast tissue engineering; however, much of the research focuses on restoring breast volume rather than breast function and seek to replace the missing tissue with fat or muscle.​ Here, we aim to develop a scaffold capable of supporting both breast adipose and glandular tissue (the main components of breast tissue) towards restoring both form and function to the breast.
Authors:
; ; ;
Award ID(s):
1752079
Publication Date:
NSF-PAR ID:
10139168
Journal Name:
Biomedical Engineering Society
Sponsoring Org:
National Science Foundation
More Like this
  1. Obeid, Iyad ; Picone, Joseph ; Selesnick, Ivan (Ed.)
    The Neural Engineering Data Consortium (NEDC) is developing a large open source database of high-resolution digital pathology images known as the Temple University Digital Pathology Corpus (TUDP) [1]. Our long-term goal is to release one million images. We expect to release the first 100,000 image corpus by December 2020. The data is being acquired at the Department of Pathology at Temple University Hospital (TUH) using a Leica Biosystems Aperio AT2 scanner [2] and consists entirely of clinical pathology images. More information about the data and the project can be found in Shawki et al. [3]. We currently have a National Science Foundation (NSF) planning grant [4] to explore how best the community can leverage this resource. One goal of this poster presentation is to stimulate community-wide discussions about this project and determine how this valuable resource can best meet the needs of the public. The computing infrastructure required to support this database is extensive [5] and includes two HIPAA-secure computer networks, dual petabyte file servers, and Aperio’s eSlide Manager (eSM) software [6]. We currently have digitized over 50,000 slides from 2,846 patients and 2,942 clinical cases. There is an average of 12.4 slides per patient and 10.5 slides per casemore »with one report per case. The data is organized by tissue type as shown below: Filenames: tudp/v1.0.0/svs/gastro/000001/00123456/2015_03_05/0s15_12345/0s15_12345_0a001_00123456_lvl0001_s000.svs tudp/v1.0.0/svs/gastro/000001/00123456/2015_03_05/0s15_12345/0s15_12345_00123456.docx Explanation: tudp: root directory of the corpus v1.0.0: version number of the release svs: the image data type gastro: the type of tissue 000001: six-digit sequence number used to control directory complexity 00123456: 8-digit patient MRN 2015_03_05: the date the specimen was captured 0s15_12345: the clinical case name 0s15_12345_0a001_00123456_lvl0001_s000.svs: the actual image filename consisting of a repeat of the case name, a site code (e.g., 0a001), the type and depth of the cut (e.g., lvl0001) and a token number (e.g., s000) 0s15_12345_00123456.docx: the filename for the corresponding case report We currently recognize fifteen tissue types in the first installment of the corpus. The raw image data is stored in Aperio’s “.svs” format, which is a multi-layered compressed JPEG format [3,7]. Pathology reports containing a summary of how a pathologist interpreted the slide are also provided in a flat text file format. A more complete summary of the demographics of this pilot corpus will be presented at the conference. Another goal of this poster presentation is to share our experiences with the larger community since many of these details have not been adequately documented in scientific publications. There are quite a few obstacles in collecting this data that have slowed down the process and need to be discussed publicly. Our backlog of slides dates back to 1997, meaning there are a lot that need to be sifted through and discarded for peeling or cracking. Additionally, during scanning a slide can get stuck, stalling a scan session for hours, resulting in a significant loss of productivity. Over the past two years, we have accumulated significant experience with how to scan a diverse inventory of slides using the Aperio AT2 high-volume scanner. We have been working closely with the vendor to resolve many problems associated with the use of this scanner for research purposes. This scanning project began in January of 2018 when the scanner was first installed. The scanning process was slow at first since there was a learning curve with how the scanner worked and how to obtain samples from the hospital. From its start date until May of 2019 ~20,000 slides we scanned. In the past 6 months from May to November we have tripled that number and how hold ~60,000 slides in our database. This dramatic increase in productivity was due to additional undergraduate staff members and an emphasis on efficient workflow. The Aperio AT2 scans 400 slides a day, requiring at least eight hours of scan time. The efficiency of these scans can vary greatly. When our team first started, approximately 5% of slides failed the scanning process due to focal point errors. We have been able to reduce that to 1% through a variety of means: (1) best practices regarding daily and monthly recalibrations, (2) tweaking the software such as the tissue finder parameter settings, and (3) experience with how to clean and prep slides so they scan properly. Nevertheless, this is not a completely automated process, making it very difficult to reach our production targets. With a staff of three undergraduate workers spending a total of 30 hours per week, we find it difficult to scan more than 2,000 slides per week using a single scanner (400 slides per night x 5 nights per week). The main limitation in achieving this level of production is the lack of a completely automated scanning process, it takes a couple of hours to sort, clean and load slides. We have streamlined all other aspects of the workflow required to database the scanned slides so that there are no additional bottlenecks. To bridge the gap between hospital operations and research, we are using Aperio’s eSM software. Our goal is to provide pathologists access to high quality digital images of their patients’ slides. eSM is a secure website that holds the images with their metadata labels, patient report, and path to where the image is located on our file server. Although eSM includes significant infrastructure to import slides into the database using barcodes, TUH does not currently support barcode use. Therefore, we manage the data using a mixture of Python scripts and manual import functions available in eSM. The database and associated tools are based on proprietary formats developed by Aperio, making this another important point of community-wide discussion on how best to disseminate such information. Our near-term goal for the TUDP Corpus is to release 100,000 slides by December 2020. We hope to continue data collection over the next decade until we reach one million slides. We are creating two pilot corpora using the first 50,000 slides we have collected. The first corpus consists of 500 slides with a marker stain and another 500 without it. This set was designed to let people debug their basic deep learning processing flow on these high-resolution images. We discuss our preliminary experiments on this corpus and the challenges in processing these high-resolution images using deep learning in [3]. We are able to achieve a mean sensitivity of 99.0% for slides with pen marks, and 98.9% for slides without marks, using a multistage deep learning algorithm. While this dataset was very useful in initial debugging, we are in the midst of creating a new, more challenging pilot corpus using actual tissue samples annotated by experts. The task will be to detect ductal carcinoma (DCIS) or invasive breast cancer tissue. There will be approximately 1,000 images per class in this corpus. Based on the number of features annotated, we can train on a two class problem of DCIS or benign, or increase the difficulty by increasing the classes to include DCIS, benign, stroma, pink tissue, non-neoplastic etc. Those interested in the corpus or in participating in community-wide discussions should join our listserv, nedc_tuh_dpath@googlegroups.com, to be kept informed of the latest developments in this project. You can learn more from our project website: https://www.isip.piconepress.com/projects/nsf_dpath.« less
  2. Background:

    Thigh muscle weakness after anterior cruciate ligament reconstruction (ACLR) can persist after returning to activity. While resistance training can improve muscle function, “nonfunctional” training methods are not optimal for inducing transfer of benefits to activities such as walking. Here, we tested the feasibility of a novel functional resistance training (FRT) approach to restore strength and function in an individual with ACLR.

    Hypothesis:

    FRT would improve knee strength and function after ACLR.

    Study Design:

    Case report.

    Level of Evidence:

    Level 5.

    Methods:

    A 15-year-old male patient volunteered for an 8-week intervention where he performed 30 minutes of treadmill walking, 3 times per week, while wearing a custom-designed knee brace that provided resistance to the thigh muscles of his ACLR leg. Thigh strength, gait mechanics, and corticospinal and spinal excitability were assessed before and immediately after the 8-week intervention. Voluntary muscle activation was evaluated immediately after the intervention.

    Results:

    Knee extensor and flexor strength increased in the ACLR leg from pre- to posttraining (130 to 225 N·m [+74%] and 44 to 88 N·m [+99%], respectively) and increases in between-limb extensor and flexor strength symmetry (45% to 92% [+74%] and 47% to 72% [+65%], respectively) were also noted. After the intervention, voluntary muscle activation in the ACLR legmore »was 72%, compared with the non-ACLR leg at 75%. Knee angle and moment during late stance phase decreased (ie, improved) in the ACLR leg and appeared more similar to the non-ACLR leg after FRT training (18° to 14° [−23.4] and 0.07 to −0.02 N·m·kg−1·m−1[−122.8%], respectively). Corticospinal and spinal excitability in the ACLR leg decreased (3511 to 2511 [−28.5%] and 0.42 to 0.24 [−43.7%], respectively) from pre- to posttraining.

    Conclusion:

    A full 8 weeks of FRT that targeted both quadriceps and hamstring muscles lead to improvements in strength and gait, suggesting that FRT may constitute a promising and practical alternative to traditional methods of resistance training.

    Clinical Relevance:

    FRT may serve as a viable approach to improve knee strength and function after ACL reconstruction.

    « less
  3. Obeid, I. (Ed.)
    The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do notmore »have access to such data resources must rely on techniques in which existing models can be adapted to new datasets [6]. A preliminary version of this breast corpus release was tested in a pilot study using a baseline machine learning system, ResNet18 [7], that leverages several open-source Python tools. The pilot corpus was divided into three sets: train, development, and evaluation. Portions of these slides were manually annotated [1] using the nine labels in Table 1 [8] to identify five to ten examples of pathological features on each slide. Not every pathological feature is annotated, meaning excluded areas can include focuses particular to these labels that are not used for training. A summary of the number of patches within each label is given in Table 2. To maintain a balanced training set, 1,000 patches of each label were used to train the machine learning model. Throughout all sets, only annotated patches were involved in model development. The performance of this model in identifying all the patches in the evaluation set can be seen in the confusion matrix of classification accuracy in Table 3. The highest performing labels were background, 97% correct identification, and artifact, 76% correct identification. A correlation exists between labels with more than 6,000 development patches and accurate performance on the evaluation set. Additionally, these results indicated a need to further refine the annotation of invasive ductal carcinoma (“indc”), inflammation (“infl”), nonneoplastic features (“nneo”), normal (“norm”) and suspicious (“susp”). This pilot experiment motivated changes to the corpus that will be discussed in detail in this poster presentation. To increase the accuracy of the machine learning model, we modified how we addressed underperforming labels. One common source of error arose with how non-background labels were converted into patches. Large areas of background within other labels were isolated within a patch resulting in connective tissue misrepresenting a non-background label. In response, the annotation overlay margins were revised to exclude benign connective tissue in non-background labels. Corresponding patient reports and supporting immunohistochemical stains further guided annotation reviews. The microscopic diagnoses given by the primary pathologist in these reports detail the pathological findings within each tissue site, but not within each specific slide. The microscopic diagnoses informed revisions specifically targeting annotated regions classified as cancerous, ensuring that the labels “indc” and “dcis” were used only in situations where a micropathologist diagnosed it as such. Further differentiation of cancerous and precancerous labels, as well as the location of their focus on a slide, could be accomplished with supplemental immunohistochemically (IHC) stained slides. When distinguishing whether a focus is a nonneoplastic feature versus a cancerous growth, pathologists employ antigen targeting stains to the tissue in question to confirm the diagnosis. For example, a nonneoplastic feature of usual ductal hyperplasia will display diffuse staining for cytokeratin 5 (CK5) and no diffuse staining for estrogen receptor (ER), while a cancerous growth of ductal carcinoma in situ will have negative or focally positive staining for CK5 and diffuse staining for ER [9]. Many tissue samples contain cancerous and non-cancerous features with morphological overlaps that cause variability between annotators. The informative fields IHC slides provide could play an integral role in machine model pathology diagnostics. Following the revisions made on all the annotations, a second experiment was run using ResNet18. Compared to the pilot study, an increase of model prediction accuracy was seen for the labels indc, infl, nneo, norm, and null. This increase is correlated with an increase in annotated area and annotation accuracy. Model performance in identifying the suspicious label decreased by 25% due to the decrease of 57% in the total annotated area described by this label. A summary of the model performance is given in Table 4, which shows the new prediction accuracy and the absolute change in error rate compared to Table 3. The breast tissue subset we are developing includes 3,505 annotated breast pathology slides from 296 patients. The average size of a scanned SVS file is 363 MB. The annotations are stored in an XML format. A CSV version of the annotation file is also available which provides a flat, or simple, annotation that is easy for machine learning researchers to access and interface to their systems. Each patient is identified by an anonymized medical reference number. Within each patient’s directory, one or more sessions are identified, also anonymized to the first of the month in which the sample was taken. These sessions are broken into groupings of tissue taken on that date (in this case, breast tissue). A deidentified patient report stored as a flat text file is also available. Within these slides there are a total of 16,971 total annotated regions with an average of 4.84 annotations per slide. Among those annotations, 8,035 are non-cancerous (normal, background, null, and artifact,) 6,222 are carcinogenic signs (inflammation, nonneoplastic and suspicious,) and 2,714 are cancerous labels (ductal carcinoma in situ and invasive ductal carcinoma in situ.) The individual patients are split up into three sets: train, development, and evaluation. Of the 74 cancerous patients, 20 were allotted for both the development and evaluation sets, while the remain 34 were allotted for train. The remaining 222 patients were split up to preserve the overall distribution of labels within the corpus. This was done in hope of creating control sets for comparable studies. Overall, the development and evaluation sets each have 80 patients, while the training set has 136 patients. In a related component of this project, slides from the Fox Chase Cancer Center (FCCC) Biosample Repository (https://www.foxchase.org/research/facilities/genetic-research-facilities/biosample-repository -facility) are being digitized in addition to slides provided by Temple University Hospital. This data includes 18 different types of tissue including approximately 38.5% urinary tissue and 16.5% gynecological tissue. These slides and the metadata provided with them are already anonymized and include diagnoses in a spreadsheet with sample and patient ID. We plan to release over 13,000 unannotated slides from the FCCC Corpus simultaneously with v1.0.0 of TUDP. Details of this release will also be discussed in this poster. Few digitally annotated databases of pathology samples like TUDP exist due to the extensive data collection and processing required. The breast corpus subset should be released by November 2021. By December 2021 we should also release the unannotated FCCC data. We are currently annotating urinary tract data as well. We expect to release about 5,600 processed TUH slides in this subset. We have an additional 53,000 unprocessed TUH slides digitized. Corpora of this size will stimulate the development of a new generation of deep learning technology. In clinical settings where resources are limited, an assistive diagnoses model could support pathologists’ workload and even help prioritize suspected cancerous cases. ACKNOWLEDGMENTS This material is supported by the National Science Foundation under grants nos. CNS-1726188 and 1925494. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. REFERENCES [1] N. Shawki et al., “The Temple University Digital Pathology Corpus,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York City, New York, USA: Springer, 2020, pp. 67 104. https://www.springer.com/gp/book/9783030368432. [2] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning.” Major Research Instrumentation (MRI), Division of Computer and Network Systems, Award No. 1726188, January 1, 2018 – December 31, 2021. https://www. isip.piconepress.com/projects/nsf_dpath/. [3] A. Gulati et al., “Conformer: Convolution-augmented Transformer for Speech Recognition,” in Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), 2020, pp. 5036-5040. https://doi.org/10.21437/interspeech.2020-3015. [4] C.-J. Wu et al., “Machine Learning at Facebook: Understanding Inference at the Edge,” in Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA), 2019, pp. 331–344. https://ieeexplore.ieee.org/document/8675201. [5] I. Caswell and B. Liang, “Recent Advances in Google Translate,” Google AI Blog: The latest from Google Research, 2020. [Online]. Available: https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html. [Accessed: 01-Aug-2021]. [6] V. Khalkhali, N. Shawki, V. Shah, M. Golmohammadi, I. Obeid, and J. Picone, “Low Latency Real-Time Seizure Detection Using Transfer Deep Learning,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2021, pp. 1 7. https://www.isip. piconepress.com/publications/conference_proceedings/2021/ieee_spmb/eeg_transfer_learning/. [7] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning,” Philadelphia, Pennsylvania, USA, 2020. https://www.isip.piconepress.com/publications/reports/2020/nsf/mri_dpath/. [8] I. Hunt, S. Husain, J. Simons, I. Obeid, and J. Picone, “Recent Advances in the Temple University Digital Pathology Corpus,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2019, pp. 1–4. https://ieeexplore.ieee.org/document/9037859. [9] A. P. Martinez, C. Cohen, K. Z. Hanley, and X. (Bill) Li, “Estrogen Receptor and Cytokeratin 5 Are Reliable Markers to Separate Usual Ductal Hyperplasia From Atypical Ductal Hyperplasia and Low-Grade Ductal Carcinoma In Situ,” Arch. Pathol. Lab. Med., vol. 140, no. 7, pp. 686–689, Apr. 2016. https://doi.org/10.5858/arpa.2015-0238-OA.« less
  4. Cardiovascular diseases, including myocardial infarction (MI), persist as the leading cause of mortality and morbidity worldwide. The limited regenerative capacity of the myocardium presents significant challenges specifically for the treatment of MI and, subsequently, heart failure (HF). Traditional therapeutic approaches mainly rely on limiting the induced damage or the stress on the remaining viable myocardium through pharmacological regulation of remodeling mechanisms, rather than replacement or regeneration of the injured tissue. The emerging alternative regenerative medicine-based approaches have focused on restoring the damaged myocardial tissue with newly engineered functional and bioinspired tissue units. Cardiac regenerative medicine approaches can be broadly categorized into three groups: cell-based therapies, scaffold-based cardiac tissue engineering, and scaffold-free cardiac tissue engineering. Despite significant advancements, however, the clinical translation of these approaches has been critically hindered by two key obstacles for successful structural and functional replacement of the damaged myocardium, namely: poor engraftment of engineered tissue into the damaged cardiac muscle and weak electromechanical coupling of transplanted cells with the native tissue. To that end, the integration of micro- and nanoscale technologies along with recent advancements in stem cell technologies have opened new avenues for engineering of structurally mature and highly functional scaffold-based (SB-CMTs) and scaffold-free cardiac microtissuesmore »(SF-CMTs) with enhanced cellular organization and electromechanical coupling for the treatment of MI and HF. In this review article, we will present the state-of-the-art approaches and recent advancements in the engineering of SF-CMTs for myocardial repair.« less
  5. Undergraduate research has emerged as a high-impact approach that can be used to enhance student engagement and to enrich student learning experiences. It is observed in the literature that undergraduate research can have an impact on student retention, and possibly attract women and ethnic minorities to science-related disciplines while playing an important role in the determination of career paths for participating students. While there are multiple studies on the impact of undergraduate research in social sciences and sciences, there is limited literature in the engineering disciplines. The limited volume of literature may be attributed to multiple reasons such as a significant emphasis on mathematics and science in the first two years of engineering curriculum, a strict sequential degree path, and a lack of flexibility in the program requirements. Engineering students often report difficulty in relating the theoretical content of the first few semesters to actual engineering applications. This study proposes the introduction of undergraduate research as a possible means of overcoming these student perceptions by introducing students to well-defined research projects at an early stage of their undergraduate degree program. The primary focus of this study is to understand student perceptions about the efficacy of undergraduate research in the engineeringmore »and engineering technology disciplines. Survey results from twenty six students involved in undergraduate research as part of the requirements for a scholarship program are presented and evaluated. Subjective evaluations from a few faculty members involved in mentoring some of these undergraduate researchers are also discussed. Although both students and faculty mentors agree that undergraduate research can be a highly valuable experience, it is commonly acknowledged that there are quite a few factors that are crucial in making the experience meaningful.« less