skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Advances in tissue engineering approaches for repairing and rehabilitating the myotendinous junction
The myotendinous junction (MTJ) acts as a bridge between muscle and tendon; yet its high stiffness relative to muscle fibers renders the tissue susceptible to injuries due to eccentric loading disparities. The limited regenerative capacity of MTJ tissue and potential for postsurgical scarring and reinjury necessitates complementary therapeutics that can enhance cellular interactions, restore mechanical properties, and support tissue rehabilitation. This review explores various approaches to engineer the MTJ utilizing biomaterial scaffolds and cellularized materials that mimic structure and function. While biomimetic materials show promise, challenges remain due to the interface’s complexity and differing patient- and location-specific structure–function characteristics, necessitating further research to address these gaps. This review also highlights the importance of studying MTJ injuries in women’s health and craniofacial reconstruction. Furthermore, engineered MTJ models provide versatile platforms for investigating trauma and degeneration, thus offering potential for advancing research across multiple fields, shedding light on interactions at tissue interfaces, and shaping the future of MTJ rehabilitation.  more » « less
Award ID(s):
2236414
PAR ID:
10520031
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Current Opinion in Biomedical Engineering
Volume:
30
Issue:
C
ISSN:
2468-4511
Page Range / eLocation ID:
100532
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    For individuals with movement impairments due to neurological injuries, rehabilitative therapies such as functional electrical stimulation (FES) and rehabilitation robots hold vast potential to improve their mobility and activities of daily living. Combining FES with rehabilitation robots results in intimately coordinated human–robot interaction. An example of such interaction is FES cycling, where motorized assistance can provide high-intensity and repetitive practice of coordinated limb motion, resulting in physiological and functional benefits. In this paper, the development of multiple FES cycling testbeds and safeguards is described, along with the switched nonlinear dynamics of the cycle–rider system. Closed-loop FES cycling control designs are described for cadence and torque tracking. For each tracking objective, the authors’ past work on robust and adaptive controllers used to compute muscle stimulation and motor current inputs is presented and discussed. Experimental results involving both able-bodied individuals and participants with neurological injuries are provided for each combination of controller and tracking objective. Trade-offs for the control algorithms are discussed based on the requirements for implementation, desired rehabilitation outcomes and resulting rider performance. Lastly, future works and the applicability of the developed methods to additional technologies including teleoperated robotics are outlined. 
    more » « less
  2. Abstract A heart attack results in the permanent loss of heart muscle and can lead to heart disease, which kills more than 7 million people worldwide each year. To date, outside of heart transplantation, current clinical treatments cannot regenerate lost heart muscle or restore full function to the damaged heart. There is a critical need to create engineered heart tissues with structural complexity and functional capacity needed to replace damaged heart muscle. The inextricable link between structure and function suggests that hydrogel composites hold tremendous promise as a biomaterial‐guided strategy to advance heart muscle tissue engineering. Such composites provide biophysical cues and functionality as a provisional extracellular matrix that hydrogels cannot on their own. This review describes the latest advances in the characterization of these biomaterial systems and using them for heart muscle tissue engineering. The review integrates results across the field to provide new insights on critical features within hydrogel composites and perspectives on the next steps to harnessing these promising biomaterials to faithfully reproduce the complex structure and function of native heart muscle. 
    more » « less
  3. Analysis of the function, structure, and intracellular organization of mitochondria is important for elucidating energy metabolism and intracellular energy transfer. In addition, basic and clinically oriented studies that investigate organ/tissue/cell dysfunction in various human diseases, including myopathies, cardiac/brain ischemia-reperfusion injuries, neurodegenerative diseases, cancer, and aging, require precise estimation of mitochondrial function. It should be noted that the main metabolic and functional characteristics of mitochondria obtained in situ (in permeabilized cells and tissue samples) and in vitro (in isolated organelles) are quite different, thereby compromising interpretations of experimental and clinical data. These differences are explained by the existence of the mitochondrial network, which possesses multiple interactions between the cytoplasm and other subcellular organelles. Metabolic and functional crosstalk between mitochondria and extra-mitochondrial cellular environments plays a crucial role in the regulation of mitochondrial metabolism and physiology. Therefore, it is important to analyze mitochondria in vivo or in situ without their isolation from the natural cellular environment. This review summarizes previous studies and discusses existing approaches and methods for the analysis of mitochondrial function, structure, and intracellular organization in situ. 
    more » « less
  4. Extensive damage to skeletal muscle tissue due to volumetric muscle loss (VML) is beyond the inherent regenerative capacity of the body, and results in permanent functional debilitation. Current clinical treatments fail to fully restore native muscle function. Recently, cell-based therapies have emerged as a promising approach to promote skeletal muscle regeneration following injury and/or disease. Stem cell populations, such as muscle stem cells, mesenchymal stem cells and induced pluripotent stem cells (iPSCs), have shown a promising capacity for muscle differentiation. Support cells, such as endothelial cells, nerve cells or immune cells, play a pivotal role in providing paracrine signaling cues for myogenesis, along with modulating the processes of inflammation, angiogenesis and innervation. The efficacy of cell therapies relies on the provision of instructive microenvironmental cues and appropriate intercellular interactions. This review describes the recent developments of cell-based therapies for the treatment of VML, with a focus on preclinical testing and future trends in the field. 
    more » « less
  5. As part of the PI's outreach, a course-based undergraduate research experience engaged undergraduate women in research from examining the literature to identify a gap, formulating a research hypothesis, designing experiments to test the hypothesis, analyzing the data, writing and submitting an abstract and presenting the research to the scientific community. This project was as follows: Current clinical approaches to repair breast damage from cancer resection, injury, or deformity focus on synthetic implants or autologous muscle grafts. While there are drawbacks and benefits to each, neither restore the function lost should the woman desire to nurse children. Tissue engineering methods have the potential to restore breast tissue volume and function that circumvent the reconstructive limitations of contemporary surgical procedures. There is a large body of research on breast tissue engineering; however, much of the research focuses on restoring breast volume rather than breast function and seek to replace the missing tissue with fat or muscle.​ Here, we aim to develop a scaffold capable of supporting both breast adipose and glandular tissue (the main components of breast tissue) towards restoring both form and function to the breast. 
    more » « less