skip to main content


Title: A Twitter Data Credibility Framework—Hurricane Harvey as a Use Case
Social media data have been used to improve geographic situation awareness in the past decade. Although they have free and openly availability advantages, only a small proportion is related to situation awareness, and reliability or trustworthiness is a challenge. A credibility framework is proposed for Twitter data in the context of disaster situation awareness. The framework is derived from crowdsourcing, which states that errors propagated in volunteered information decrease as the number of contributors increases. In the proposed framework, credibility is hierarchically assessed on two tweet levels. The framework was tested using Hurricane Harvey Twitter data, in which situation awareness related tweets were extracted using a set of predefined keywords including power, shelter, damage, casualty, and flood. For each tweet, text messages and associated URLs were integrated to enhance the information completeness. Events were identified by aggregating tweets based on their topics and spatiotemporal characteristics. Credibility for events was calculated and analyzed against the spatial, temporal, and social impacting scales. This framework has the potential to calculate the evolving credibility in real time, providing users insight on the most important and trustworthy events.  more » « less
Award ID(s):
1841520
NSF-PAR ID:
10139178
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ISPRS International Journal of Geo-Information
Volume:
8
Issue:
3
ISSN:
2220-9964
Page Range / eLocation ID:
111
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The objective of this paper is to propose and test a system analytics framework based on social sensing and text mining to detect topic evolution associated with the performance of infrastructure systems in disasters. Social media, like Twitter, as active channels of communication and information dissemination, provide insights into real-time information and first-hand experience from affected areas in mass emergencies. While the existing studies show the importance of social sensing in improving situational awareness and emergency response in disasters, the use of social sensing for detection and analysis of infrastructure systems and their resilience performance has been rather limited. This limitation is due to the lack of frameworks to model the events and topics (e.g., grid interruption and road closure) evolution associated with infrastructure systems (e.g., power, highway, airport, and oil) in times of disasters. The proposed framework detects infrastructure-related topics of the tweets posted in disasters and their evolutions by integrating searching relevant keywords, text lemmatization, Part-of-Speech (POS) tagging, TF-IDF vectorization, topic modeling by using Latent Dirichlet Allocation (LDA), and K-Means clustering. The application of the proposed framework was demonstrated in a study of infrastructure systems in Houston during Hurricane Harvey. In this case study, more than sixty thousand tweets were retrieved from 150-mile radius in Houston over 39 days. The analysis of topic detection and evolution from user-generated data were conducted, and the clusters of tweets pertaining to certain topics were mapped in networks over time. The results show that the proposed framework enables to summarize topics and track the movement of situations in different disaster phases. The analytics elements of the proposed framework can improve the recognition of infrastructure performance through text-based representation and provide evidence for decision-makers to take actionable measurements. 
    more » « less
  2. Abstract Objectives

    The study sought to test the feasibility of using Twitter data to assess determinants of consumers’ health behavior toward human papillomavirus (HPV) vaccination informed by the Integrated Behavior Model (IBM).

    Materials and Methods

    We used 3 Twitter datasets spanning from 2014 to 2018. We preprocessed and geocoded the tweets, and then built a rule-based model that classified each tweet into either promotional information or consumers’ discussions. We applied topic modeling to discover major themes and subsequently explored the associations between the topics learned from consumers’ discussions and the responses of HPV-related questions in the Health Information National Trends Survey (HINTS).

    Results

    We collected 2 846 495 tweets and analyzed 335 681 geocoded tweets. Through topic modeling, we identified 122 high-quality topics. The most discussed consumer topic is “cervical cancer screening”; while in promotional tweets, the most popular topic is to increase awareness of “HPV causes cancer.” A total of 87 of the 122 topics are correlated between promotional information and consumers’ discussions. Guided by IBM, we examined the alignment between our Twitter findings and the results obtained from HINTS. Thirty-five topics can be mapped to HINTS questions by keywords, 112 topics can be mapped to IBM constructs, and 45 topics have statistically significant correlations with HINTS responses in terms of geographic distributions.

    Conclusions

    Mining Twitter to assess consumers’ health behaviors can not only obtain results comparable to surveys, but also yield additional insights via a theory-driven approach. Limitations exist; nevertheless, these encouraging results impel us to develop innovative ways of leveraging social media in the changing health communication landscape.

     
    more » « less
  3. With the spread of the SARS-CoV-2, enormous amounts of information about the pandemic are disseminated through social media platforms such as Twitter. Social media posts often leverage the trust readers have in prestigious news agencies and cite news articles as a way of gaining credibility. Nevertheless, it is not always the case that the cited article supports the claim made in the social media post. We present a cross-genre ad hoc pipeline to identify whether the information in a Twitter post (i.e., a “Tweet”) is indeed supported by the cited news article. Our approach is empirically based on a corpus of over 46.86 million Tweets and is divided into two tasks: (i) development of models to detect Tweets containing claim and worth to be fact-checked and (ii) verifying whether the claims made in a Tweet are supported by the newswire article it cites. Unlike previous studies that detect unsubstantiated information by post hoc analysis of the patterns of propagation, we seek to identify reliable support (or the lack of it) before the misinformation begins to spread. We discover that nearly half of the Tweets (43.4%) are not factual and hence not worth checking – a significant filter, given the sheer volume of social media posts on a platform such as Twitter. Moreover, we find that among the Tweets that contain a seemingly factual claim while citing a news article as supporting evidence, at least 1% are not actually supported by the cited news, and are hence misleading. 
    more » « less
  4. null (Ed.)
    Tweet hashtags have the potential to improve the search for information during disaster events. However, there is a large number of disaster-related tweets that do not have any user-provided hashtags. Moreover, only a small number of tweets that contain actionable hashtags are useful for disaster response. To facilitate progress on automatic identification (or extraction) of disaster hashtags for Twitter data, we construct a unique dataset of disaster-related tweets annotated with hashtags useful for filtering actionable information. Using this dataset, we further investigate Long Short-Term Memory-based models within a Multi-Task Learning framework. The best performing model achieves an F1-score as high as $92.22%$. The dataset, code, and other resources are available on Github.1 
    more » « less
  5. null (Ed.)
    This study evaluates the level of service of shared transportation facilities through mining geotagged data from social media and analyzing the perceptions of road users. An algorithm is developed adopting a text classification approach with contextual understanding to filter out relevant information related to users’ perceptions toward active mobility. Using a heuristic-based keyword matching approach produces about 75% tweets that are out of context, so that approach is deemed unsuitable for information extraction from Twitter. This study implements six different text classification models and compares the performance of these models for tweet classification. The model is applied to real-world data to filter out relevant information, and content analysis is performed to check the distribution of keywords within the filtered data. The text classification model “term frequency-inverse document frequency” vectorizer-based logistic regression model performed best at classifying the tweets. To select the best model, the performances of the models are compared based on precision, recall, F1 score (geometric mean of precision and recall), and accuracy metrics. The findings from the analysis show that the proposed method can help produce more relevant information on walking and biking facilities as well as safety concerns. By analyzing the sentiments of the filtered data, the existing condition of biking and walking facilities in the DC area can be inferred. This method can be a critical part of the decision support system to understand the qualitative level of service of existing transportation facilities. 
    more » « less