- PAR ID:
- 10350369
- Date Published:
- Journal Name:
- Journal of Data and Information Quality
- ISSN:
- 1936-1955
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
As the internet and social media continue to become increasingly used for sharing break- ing news and important updates, it is with great motivation to study the behaviors of online users during crisis events. One of the biggest issues with obtaining information online is the veracity of such content. Given this vulnerability, misinformation becomes a very danger- ous and real threat when spread online. This study investigates misinformation debunking efforts and fills the research gap on cross-platform information sharing when misinforma- tion is spread during disasters. The false rumor “immigration status is checked at shelters” spread in both Hurricane Harvey and Hurricane Irma in 2017 and was analyzed in this paper based on a collection of 12,900 tweets. By studying the rumor control efforts made by thousands of accounts, we found that Twitter users respond and interact the most with tweets from verified Twitter accounts, and especially government organizations. Results on sourcing analysis show that the majority of Twitter users who utilize URLs in their post- ings are employing the information in the URLs to help debunk the false rumor. The most frequently cited information comes from news agencies when analyzing both URLs and domains. This paper provides novel insights into rumor control efforts made through social media during natural disasters and also the information sourcing and sharing behaviors that users exhibit during the debunking of false rumors.more » « less
-
The proliferation of Internet-enabled smartphones has ushered in an era where events are reported on social media websites such as Twitter and Facebook. However, the short text nature of social media posts, combined with a large volume of noise present in such datasets makes event detection challenging. This problem can be alleviated by using other sources of information, such as news articles, that employ a precise and factual vocabulary, and are more descriptive in nature. In this paper, we propose Spatio-Temporal Event Detection (STED), a probabilistic model to discover events, their associated topics, time of occurrence, and the geospatial distribution from multiple data sources, such as news and Twitter. The joint modeling of news and Twitter enables our model to distinguish events from other noisy topics present in Twitter data. Furthermore, the presence of geocoordinates and timestamps in tweets helps find the spatio-temporal distribution of the events. We evaluate our model on a large corpus of Twitter and news data, and our experimental results show that STED can effectively discover events, and outperforms state-of-the-art techniques.more » « less
-
Retracted papers often circulate widely on social media, digital news, and other websites before their official retraction. The spread of potentially inaccurate or misleading results from retracted papers can harm the scientific community and the public. Here, we quantify the amount and type of attention 3,851 retracted papers received over time in different online platforms. Comparing with a set of nonretracted control papers from the same journals with similar publication year, number of coauthors, and author impact, we show that retracted papers receive more attention after publication not only on social media but also, on heavily curated platforms, such as news outlets and knowledge repositories, amplifying the negative impact on the public. At the same time, we find that posts on Twitter tend to express more criticism about retracted than about control papers, suggesting that criticism-expressing tweets could contain factual information about problematic papers. Most importantly, around the time they are retracted, papers generate discussions that are primarily about the retraction incident rather than about research findings, showing that by this point, papers have exhausted attention to their results and highlighting the limited effect of retractions. Our findings reveal the extent to which retracted papers are discussed on different online platforms and identify at scale audience criticism toward them. In this context, we show that retraction is not an effective tool to reduce online attention to problematic papers.more » « less
-
null (Ed.)An important means for disseminating information in social media platforms is by including URLs that point to external sources in user posts. In Twitter, we estimate that about 21% of the daily stream of English-language tweets contain URLs. We notice that NLP tools make little attempt at understanding the relationship between the content of the URL and the text surrounding it in a tweet. In this work, we study the structure of tweets with URLs relative to the content of the Web documents pointed to by the URLs. We identify several segments classes that may appear in a tweet with URLs, such as the title of a Web page and the user's original content. Our goals in this paper are: introduce, define, and analyze the segmentation problem of tweets with URLs, develop an effective algorithm to solve it, and show that our solution can benefit sentiment analysis on Twitter. We also show that the problem is an instance of the block edit distance problem, and thus an NP-hard problem.more » « less
-
Abstract Social media has been increasingly utilized to spread breaking news and risk communications during disasters of all magnitudes. Unfortunately, due to the unmoderated nature of social media platforms such as Twitter, rumors and misinformation are able to propagate widely. Given this, a surfeit of research has studied false rumor diffusion on Twitter, especially during natural disasters. Within this domain, studies have also focused on the misinformation control efforts from government organizations and other major agencies. A prodigious gap in research exists in studying the monitoring of misinformation on social media platforms in times of disasters and other crisis events. Such studies would offer organizations and agencies new tools and ideologies to monitor misinformation on platforms such as Twitter, and make informed decisions on whether or not to use their resources in order to debunk. In this work, we fill the research gap by developing a machine learning framework to predict the veracity of tweets that are spread during crisis events. The tweets are tracked based on the veracity of their content as either true, false, or neutral. We conduct four separate studies, and the results suggest that our framework is capable of tracking multiple cases of misinformation simultaneously, with scores exceeding 87%. In the case of tracking a single case of misinformation, our framework reaches an score of 83%. We collect and drive the algorithms with 15,952 misinformation‐related tweets from the Boston Marathon bombing (2013), Manchester Arena bombing (2017), Hurricane Harvey (2017), Hurricane Irma (2017), and the Hawaii ballistic missile false alert (2018). This article provides novel insights on how to efficiently monitor misinformation that is spread during disasters.