Arising in many branches of physics, Hopf solitons are three-dimensional particle-like field distortions with nontrivial topology described by the Hopf map. Despite their recent discovery in colloids and liquid crystals, the requirement of applied fields or confinement for stability impedes their utility in technological applications. Here we demonstrate stable Hopf solitons in a liquid crystal material without these requirements as a result of enhanced stability by tuning anisotropy of parameters that describe energetic costs of different gradient components in the molecular alignment field. Nevertheless, electric fields allow for inter-transformation of Hopf solitons between different geometric embodiments, as well as for their three-dimensional hopping-like dynamics in response to electric pulses. Numerical modelling reproduces both the equilibrium structure and topology-preserving out-of-equilibrium evolution of the soliton during switching and motions. Our findings may enable myriads of solitonic condensed matter phases and active matter systems, as well as their technological applications.
Malleability of metals is an example of how the dynamics of defects like dislocations induced by external stresses alters material properties and enables technological applications. However, these defects move merely to comply with the mechanical forces applied on macroscopic scales, whereas the molecular and atomic building blocks behave like rigid particles. Here, we demonstrate how motions of crystallites and the defects between them can arise within the soft matter medium in an oscillating electric field applied to a chiral liquid crystal with polycrystalline quasi-hexagonal arrangements of self-assembled topological solitons called “torons.” Periodic oscillations of electric field applied perpendicular to the plane of hexagonal lattices prompt repetitive shear-like deformations of the solitons, which synchronize the electrically powered self-shearing directions. The temporal evolution of deformations upon turning voltage on and off is not invariant upon reversal of time, prompting lateral translations of the crystallites of torons within quasi-hexagonal periodically deformed lattices. We probe how these motions depend on voltage and frequency of oscillating field applied in an experimental geometry resembling that of liquid crystal displays. We study the interrelations between synchronized deformations of the soft solitonic particles and their arrays, and the ensuing dynamics and giant number fluctuations mediated by motions of crystallites, five–seven defects pairs, and grain boundaries in the orderly organizations of solitons. We discuss how our findings may lead to technological and fundamental science applications of dynamic self-assemblies of topologically protected but highly deformable particle-like solitons.
more » « less- Award ID(s):
- 1810513
- PAR ID:
- 10139230
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 117
- Issue:
- 12
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- p. 6437-6445
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Light provides a powerful means of controlling physical behavior of materials but is rarely used to power and guide active matter systems. We demonstrate optical control of liquid crystalline topological solitons dubbed “skyrmions”, which recently emerged as highly reconfigurable inanimate active particles capable of exhibiting emergent collective behaviors like schooling. Because of a chiral nematic liquid crystal’s natural tendency to twist and its facile response to electric fields and light, it serves as a testbed for dynamic control of skyrmions and other active particles. Using ambient-intensity unstructured light, we demonstrate large-scale multifaceted reconfigurations and unjamming of collective skyrmion motions powered by oscillating electric fields and guided by optically-induced obstacles and patterned illumination.
-
Abstract Dispersing inorganic colloidal nanoparticles within nematic liquid crystals provides a versatile platform both for forming new soft matter phases and for predefining physical behavior through mesoscale molecular‐colloidal self‐organization. However, owing to formation of particle‐induced singular defects and complex elasticity‐mediated interactions, this approach has been implemented mainly just for colloidal nanorods and nanoplatelets, limiting its potential technological utility. Here, orientationally ordered nematic colloidal dispersions are reported of pentagonal gold bipyramids that exhibit narrow but controlled polarization‐dependent surface plasmon resonance spectra and facile electric switching. Bipyramids tend to orient with their C5rotation symmetry axes along the nematic director, exhibiting spatially homogeneous density within aligned samples. Topological solitons, like heliknotons, allow for spatial reorganization of these nanoparticles according to elastic free energy density within their micrometer‐scale structures. With the nanoparticle orientations slaved to the nematic director and being switched by low voltages ≈1 V within a fraction of a second, these plasmonic composite materials are of interest for technological uses like color filters and plasmonic polarizers, as well as may lead to the development of unusual nematic phases, like pentatic liquid crystals.
-
Abstract The search for new strategies for large‐scale, self‐assembled arrays of soft objects is key for many applications in photonics and bottom‐up manufacturing. This work shows how liquid crystal topological defects can be assembled in controlled, aperiodic arrays. In particular, the focus is on two typical examples: quasicrystals and moiré patterns. Thanks to a combination of topographical cues, specifically a micropillar array and electrical switching, defects can be assembled in a quasicrystal structure, as seen from polarized optical microscopy and from diffraction patterns. In this setting, the liquid crystal defects assemble in multiple patterns that can be switched by tuning the applied electric field and retain the quasicrystalline symmetry. Using topographic cues, it is also possible to induce moiré patterns of defects, characterized by a long wavelength superimposed on the periodic structures over a short scale. Even when the defect density increases and the short‐scale periodicity is lost, the long‐scale one remains. This work shows how versatile the combination of topographic confinement and electro‐optic effect is, giving access to patterns that are otherwise difficult to realize.
-
Dense assemblies of self-propelling rods (SPRs) may exhibit fascinating collective behaviors and anomalous physical properties that are far away from equilibrium. Using large-scale Brownian dynamics simulations, we investigate the dynamics of disclination defects in 2D fluidized swarming motions of dense dry SPRs ( i.e. , without hydrodynamic effects) that form notable local positional topological structures that are reminiscent of smectic order. We find the deformations of smectic-like rod layers can create unique polar structures that lead to slow translations and rotations of ±1/2-order defects, which are fundamentally different from the fast streaming defect motions observed in wet active matter. We measure and characterize the statistical properties of topological defects and reveal their connections with the coherent structures. Furthermore, we construct a bottom-up active-liquid-crystal model to analyze the instability of polar lanes, which effectively leads to defect formation between interlocked polar lanes and serves as the origin of the large-scale swarming motions.more » « less