Euryhaline fish experience variable osmotic environments requiring physiological adjustments to tolerate elevated salinity. Mozambique tilapia ( Oreochromis mossambicus) possess one of the highest salinity tolerance limits of any fish. In tilapia and other euryhaline fish species the myo-inositol biosynthesis (MIB) pathway enzymes, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1.1), are among the most upregulated mRNAs and proteins indicating the high importance of this pathway for hyper-osmotic (HO) stress tolerance. These abundance changes must be precluded by HO perception and signaling mechanism activation to regulate the expression of MIPS and IMPA1.1 genes. In previous work using a O. mossambicus cell line (OmB), a reoccurring osmosensitive enhancer element (OSRE1) in both MIPS and IMPA1.1 was shown to transcriptionally upregulate these enzymes in response to HO stress. The OSRE1 core consensus (5'-GGAAA-3') matches the core binding sequence of the predominant mammalian HO response transcription factor, nuclear factor of activated T-cells (NFAT5). HO challenged OmB cells showed an increase in NFAT5 mRNA suggesting NFAT5 may contribute to MIB pathway regulation in euryhaline fish. Ectopic expression of wild-type NFAT5 induced an IMPA1.1 promoter-driven reporter by 5.1-fold (p < 0.01). Moreover, expression of dominant negative NFAT5 in HO media resulted in a 47% suppression of the reporter signal (p<0.005). Furthermore, reductions of IMPA1.1 (37-49%) and MIPS (6-37%) mRNA abundance were observed in HO challenged NFAT5 knockout cells relative to control cells. Collectively, these multiple lines of experimental evidence establish NFAT5 as a tilapia transcription factor contributing to HO induced activation of the MIB pathway.
more »
« less
Investigation of IMPA1.1 regulation in euryhaline fishes using genetic manipulations of cell cultures
Aquatic animals existing in variable salinity environments must possess mechanisms to maintain cellular osmotic balance essential for function. When facing hyper-osmotic stress, some cells can produce biochemically inert compatible organic osmolytes, such as myoinositol, to combat the osmotic gradient across the cell membrane. Myo-inositol is commonly utilized in this manner across widely diverse taxa. The final enzyme in the myo-inositol synthesis pathway is IMPA1.1 which has been shown to be highly upregulated in multiple tissues in several fish species in response to hyperosmotic challenge including Oreochromis mossambicus, a teleost fish tolerant of extreme hypersaline conditions. When the regulatory region of IMPA1.1 from this species was cloned upstream of multiple reporter genes and transfected into cell cultures, high reporter activity was observed in cells of both this species and a distantly related species, suggesting high conservation of regulatory elements and utilization of a common hyperosmotic response signaling pathway. Current work includes further genetic manipulations of this pathway in cell culture models to decipher its components from cellular osmosensing leading to differential regulation of relevant genes. Supported by NSF award 1656371 and BARD award IS-4800-15 R.
more »
« less
- Award ID(s):
- 1656371
- PAR ID:
- 10139305
- Date Published:
- Journal Name:
- ICBF Proceeedings
- Volume:
- 13
- Issue:
- Calgary
- Page Range / eLocation ID:
- 72
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Iwanowicz, Luke R. (Ed.)ABSTRACT Hypervirulent Aeromonas hydrophila (vAh) has emerged as the etiologic agent of epidemic outbreaks of motile Aeromonas septicemia (MAS) in high-density aquaculture of farmed carp in China and catfish in the United States, which has caused millions of tons of lost fish. We conducted a global survey to better understand the evolution, geographical distribution, and phylogeny of vAh. Aeromonas isolates were isolated from fish that showed clinical symptoms of MAS, and pure cultures were screened for the ability to utilize myo -inositol as the sole carbon source. A total of 113 myo- inositol-utilizing bacterial strains were included in this study, including additional strains obtained from previously published culture collections. Based on a gyrB phylogeny, this collection included 66 A. hydrophila isolates, 48 of which were vAh. This collection also included five new vAh isolates from diseased Pangas catfish ( Pangasius pangasius ) and striped catfish ( Pangasianodon hypophthalmus ) obtained in Cambodia and Vietnam, respectively. Genome sequences were generated from representative vAh and non-vAh isolates to evaluate the potential for lateral genetic transfer of the myo- inositol catabolism pathway. Phylogenetic analyses of each of the nine genes required for myo -inositol utilization revealed the close affiliation of vAh strains regardless of geographic origin and suggested lateral genetic transfer of this catabolic pathway from an Enterobacter species. Prediction of virulence factors was conducted to determine differences between vAh and non-vAh strains in terms of virulence and secretion systems. Core genome phylogenetic analyses on vAh isolates and Aeromonas spp. disease isolates (55 in total) were conducted to evaluate the evolutionary relationships among vAh and other Aeromonas sp. isolates, which supported the clonal nature of vAh isolates. IMPORTANCE This global survey of vAh brought together scientists that study fish disease to evaluate the evolution, geographical distribution, phylogeny, and hosts of vAh and other Aeromonas sp. isolates. In addition to vAh isolates from China and the United States, four new vAh isolates were isolated from the lower Mekong River basin in Cambodia and Vietnam, indicating the significant threat of vAh to modern aquaculture and the need for improved biosecurity to prevent vAh spread.more » « less
-
null (Ed.)Euryhaline fish tolerate a wide range of environmental salinity by employing molecular mechanisms for coping with the associated osmotic stress. We have previously shown that osmotic stress transcription factor 1 (OSTF1) is part of these mechanisms. OSTF1 is transiently and rapidly upregulated in gill epithelial cells of tilapia (Oreochromis mossambicus) exposed to hyperosmolality. Hyperosmotic induction of OSTF1 in tilapia gills was reproduced in the tilapia OmB cell neuroepithelial cell line. OSTF1 shares the signature sequence of the TSC-22 family suggesting that it is a transcriptional repressor. If, in fact, OSTF1 is a transcription factor, we hypothesize that it will localize to the nucleus during hyperosmotic stress. Using standard cloning procedures, OSTF1 was tagged with enhanced green fluorescent protein (EGFP) at either the C- or N-terminus. Using fluorescent microscopy we show that the fusion proteins are retained in the cytosol under iso-osmotic conditions. To evaluate potential nuclear translocation of OSTF1 during hyperosmotic stress, we subjected OmB cells expressing the OSTF1:EGFP fusion protein to hyperosmotic media and imaged at time intervals from 5 minutes to 4 hours using a Leica Dmi8 microscope with automated scanning stage. At four hours and 650 mOsmol/kg, subcellular localization quantified by LASX image analysis (Leica) demonstrated that OSTF1:EGFP was mostly localized to the nucleus. This result supports our hypothesis that OSTF1 is indeed an osmotically inducible transcription factor. Current work evaluates influence of specific OSTF1 domains on nuclear localization.more » « less
-
null (Ed.)Understanding cellular stress response pathways is challenging because of the complexity of regulatory mechanisms and response dynamics, which can vary with both time and the type of stress. We developed a reverse genetic method called ReporterSeq to comprehensively identify genes regulating a stress-induced transcription factor under multiple conditions in a time-resolved manner. ReporterSeq links RNA-encoded barcode levels to pathway-specific output under genetic perturbations, allowing pooled pathway activity measurements via DNA sequencing alone and without cell enrichment or single-cell isolation. We used ReporterSeq to identify regulators of the heat shock response (HSR), a conserved, poorly understood transcriptional program that protects cells from proteotoxicity and is misregulated in disease. Genome-wide HSR regulation in budding yeast was assessed across 15 stress conditions, uncovering novel stress-specific, time-specific, and constitutive regulators. ReporterSeq can assess the genetic regulators of any transcriptional pathway with the scale of pooled genetic screens and the precision of pathway-specific readouts.more » « less
-
The California Grunion, Leuresthes tenuis, can experience a broad range of salinities during their early life stages, with their nursery grounds measuring salinities of 21 to 42ppt under normal conditions. Due to the unique subterrestrial incubation of their eggs within the sand of California beaches, it is not unlikely for this marine fish to hatch in non-seawater conditions, whereafter the larvae may transition to relatively diluted estuaries or concentrated harbors to develop as juveniles for several months. Consequently, they are an ideal system to study the impacts of ecologically relevant salinity stress on the alteration of proteins and histone post-translational modifications (PTMs) during early development. The study of the relationship between the critical window of development (CWD), in which sexual bipotential is lost, and the longevity of protein landscape and histone PTM changes has not been widely explored. The CWD is of interest as this is when the gametes of this species become set. Therefore, we hypothesize that histone PTM changes that occur during this time may thus be a form of heritable epigenetics. Thus, hypo-and-hyperosmotic exposures of L. tenuis hatchlings during this window, and past it, attempt to identify if the CWD is relevant to the presence and persistence of protein and histone PTM changes under salinity stress. We hypothesize that exposure to osmotic stress during the CWD will result in induced compensatory mechanisms in the protein landscape of the California grunion larvae, as well as persistent alterations in the histone PTMs in the larvae. To elucidate the relationship between these factors, California grunion larvae were exposed in replicate to one of three chronic salinity treatments (16ppt, 32ppt, or 40ppt) for the duration of their CWD (68dph), with 16ppt and 40ppt inducing hypoosmotic and hyperosmotic stress respectively. Chronic post-CWD exposures and recovery times until 98dph were used to determine whether the CWD or prolonged salinity exposures were key to alterations in the histone PTM and protein landscape of the larvae. After each timepoint, L. tenuis were culled and processed for histone PTM enrichment and proteomic analysis. At the time of culling, there were no significant differences in survivorship between replicates and experimental groups, with statistically significant different deaths between groups occurring only shortly after hatching. Skyline and MSstats were used in the analysis of the statistical significance of differential regulation of proteins and histone PTMs under stress conditions versus the controls. Of special interest is the osmoregulatory mechanisms involved in the myo-inositol biosynthesis pathway, with analysis focusing on the abundance of histone acetylation, amidation, ubiquitylation, and 4-hydroxynonelation in histone PTMs, as the accumulations of these have been found to be correlated with osmotic stress in some fish tissues. Funding provided by NSF IOS-2209383 and NSF GRFP. This is the full abstract presented at the American Physiology Summit 2024 meeting and is only available in HTML format. There are no additional versions or additional content available for this abstract. Physiology was not involved in the peer review process.more » « less
An official website of the United States government

