skip to main content


Title: LED array reflectance microscopy for scattering-based multi-contrast imaging

LED array microscopy is an emerging platform for computational imaging with significant utility for biological imaging. Existing LED array systems often exploit transmission imaging geometries of standard brightfield microscopes that leave the rich backscattered field undetected. This backscattered signal contains high-resolution sample information with superb sensitivity to subtle structural features that make it ideal for biological sensing and detection. Here, we develop an LED array reflectance microscope capturing the sample’s backscattered signal. In particular, we demonstrate multimodal brightfield, darkfield, and differential phase contrast imaging on fixed and living biological specimens includingCaenorhabditis elegans (C. elegans), zebrafish embryos, and live cell cultures. Video-rate multimodal imaging at 20 Hz records real time features of freely movingC. elegansand the fast beating heart of zebrafish embryos. Our new reflectance mode is a valuable addition to the LED array microscopic toolbox.

 
more » « less
Award ID(s):
1846784
NSF-PAR ID:
10139601
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
45
Issue:
7
ISSN:
0146-9592; OPLEDP
Page Range / eLocation ID:
Article No. 1647
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Assisted reproductive technologies seek to improve the success rate of pregnancies. Morphology scoring is a common approach to evaluate oocyte and embryo viability prior to embryo transferin utero, but the efficacy of the method is low. We apply biodynamic imaging, based on dynamic light scattering and low-coherence digital holography, to assess the metabolic activity of oocytes and embryos. A biodynamic microscope, developed to image small and translucent biological specimens, is inserted into the bay of a commercial inverted microscope that can switch between conventional microscopy channels and biodynamic microscopy. We find intracellular Doppler spectral features that act as noninvasive proxies for embryo metabolic activity that may relate to embryo viability.

     
    more » « less
  2. The use of multispectral geostationary satellites to study aquatic ecosystems improves the temporal frequency of observations and mitigates cloud obstruction, but no operational capability presently exists for the coastal and inland waters of the United States. The Advanced Baseline Imager (ABI) on the current iteration of the Geostationary Operational Environmental Satellites, termed theRSeries (GOES-R), however, provides sub-hourly imagery and the opportunity to overcome this deficit and to leverage a large repository of existing GOES-R aquatic observations. The fulfillment of this opportunity is assessed herein using a spectrally simplified, two-channel aquatic algorithm consistent with ABI wave bands to estimate the diffuse attenuation coefficient for photosynthetically available radiation,Kd(PAR). First, anin situABI dataset was synthesized using a globally representative dataset of above- and in-water radiometric data products. Values ofKd(PAR)were estimated by fitting the ratio of the shortest and longest visible wave bands from thein situABI dataset to coincident,in situKd(PAR)data products. The algorithm was evaluated based on an iterative cross-validation analysis in which 80% of the dataset was randomly partitioned for fitting and the remaining 20% was used for validation. The iteration producing the median coefficient of determination (R2) value (0.88) resulted in a root mean square difference of0.319m−<#comment/>1, or 8.5% of the range in the validation dataset. Second, coincident mid-day images of central and southern California from ABI and from the Moderate Resolution Imaging Spectroradiometer (MODIS) were compared using Google Earth Engine (GEE). GEE default ABI reflectance values were adjusted based on a near infrared signal. Matchups between the ABI and MODIS imagery indicated similar spatial variability (R2=0.60) between ABI adjusted blue-to-red reflectance ratio values and MODIS default diffuse attenuation coefficient for spectral downward irradiance at 490 nm,Kd(490), values. This work demonstrates that if an operational capability to provide ABI aquatic data products was realized, the spectral configuration of ABI would potentially support a sub-hourly, visible aquatic data product that is applicable to water-mass tracing and physical oceanography research.

     
    more » « less
  3. One of the major challenges in large scale optical imaging of neuronal activity is to simultaneously achieve sufficient temporal and spatial resolution across a large volume. Here, we introduce sparse decomposition light-field microscopy (SDLFM), a computational imaging technique based on light-field microscopy (LFM) that takes algorithmic advantage of the high temporal resolution of LFM and the inherent temporal sparsity of spikes to improve effective spatial resolution and signal-to-noise ratios (SNRs). With increased effective spatial resolution and SNRs, neuronal activity at the single-cell level can be recovered over a large volume. We demonstrate the single-cell imaging capability of SDLFM within vivoimaging of neuronal activity of whole brains of larval zebrafish with estimated lateral and axial resolutions of∼<#comment/>3.5µ<#comment/>mand∼<#comment/>7.4µ<#comment/>m, respectively, acquired at volumetric imaging rates up to 50 Hz. We also show that SDLFM increases the quality of neural imaging in adult fruit flies.

     
    more » « less
  4. Traditional fluorescence microscopy is blind to molecular microenvironment information that is present in a fluorescence lifetime, which can be measured by fluorescence lifetime imaging microscopy (FLIM). However, most existing FLIM techniques are slow to acquire and process lifetime images, difficult to implement, and expensive. Here we present instant FLIM, an analog signal processing method that allows real-time streaming of fluorescence intensity, lifetime, and phasor imaging data through simultaneous image acquisition and instantaneous data processing. Instant FLIM can be easily implemented by upgrading an existing two-photon microscope using cost-effective components and our open-source software. We further improve the functionality, penetration depth, and resolution of instant FLIM using phasor segmentation, adaptive optics, and super-resolution techniques. We demonstrate through-skull intravital 3D FLIM of mouse brains to depths of 300 µm and present the firstin vivo4D FLIM of microglial dynamics in intact and injured zebrafish and mouse brains for up to 12 h.

     
    more » « less
  5. Optical coherence tomography (OCT) has seen widespread success as anin vivoclinical diagnostic 3D imaging modality, impacting areas including ophthalmology, cardiology, and gastroenterology. Despite its many advantages, such as high sensitivity, speed, and depth penetration, OCT suffers from several shortcomings that ultimately limit its utility as a 3D microscopy tool, such as its pervasive coherent speckle noise and poor lateral resolution required to maintain millimeter-scale imaging depths. Here, we present 3D optical coherence refraction tomography (OCRT), a computational extension of OCT that synthesizes an incoherent contrast mechanism by combining multiple OCT volumes, acquired across two rotation axes, to form a resolution-enhanced, speckle-reduced, refraction-corrected 3D reconstruction. Our label-free computational 3D microscope features a novel optical design incorporating a parabolic mirror to enable the capture of 5D plenoptic datasets, consisting of millimetric 3D fields of view over up to±<#comment/>75∘<#comment/>without moving the sample. We demonstrate that 3D OCRT reveals 3D features unobserved by conventional OCT in fruit fly, zebrafish, and mouse samples.

     
    more » « less