skip to main content

Title: A Solution to Antifolate Resistance in Group B Streptococcus : Untargeted Metabolomics Identifies Human Milk Oligosaccharide-Induced Perturbations That Result in Potentiation of Trimethoprim
ABSTRACT Adjuvants can be used to potentiate the function of antibiotics whose efficacy has been reduced by acquired or intrinsic resistance. In the present study, we discovered that human milk oligosaccharides (HMOs) sensitize strains of group B Streptococcus (GBS) to trimethoprim (TMP), an antibiotic to which GBS is intrinsically resistant. Reductions in the MIC of TMP reached as high as 512-fold across a diverse panel of isolates. To better understand HMOs’ mechanism of action, we characterized the metabolic response of GBS to HMO treatment using ultrahigh-performance liquid chromatography–high-resolution tandem mass spectrometry (UPLC-HRMS/MS) analysis. These data showed that when challenged by HMOs, GBS undergoes significant perturbations in metabolic pathways related to the biosynthesis and incorporation of macromolecules involved in membrane construction. This study represents reports the metabolic characterization of a cell that is perturbed by HMOs. IMPORTANCE Group B Streptococcus is an important human pathogen that causes serious infections during pregnancy which can lead to chorioamnionitis, funisitis, premature rupture of gestational membranes, preterm birth, neonatal sepsis, and death. GBS is evolving antimicrobial resistance mechanisms, and the work presented in this paper provides evidence that prebiotics such as human milk oligosaccharides can act as adjuvants to restore the utility of antibiotics.
; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. Group B Streptococcus (GBS) is one of the leading infection-related causes of adverse maternal and neonatal outcomes. This includes chorioamnionitis, which leads to preterm ruptures of membranes and can ultimately result in preterm or stillbirth. Infection can also lead to maternal and neonatal sepsis that may contribute to mortality. Currently, treatment for GBS infection include a bolus of intrapartum antibiotic prophylaxis to mothers testing positive for GBS colonization during late pregnancy. Lactoferrin is an antimicrobial peptide expressed in human breast milk, mucosal epithelia, and secondary granules of neutrophils. We previously demonstrated that lactoferrin possesses antimicrobial and antibiofilm properties against severalmore »strains of GBS. This is largely due to the ability of lactoferrin to bind and sequester iron. We expanded upon that study by assessing the effects of purified human breast milk lactoferrin against a panel of phenotypically and genetically diverse isolates of GBS. Of the 25 GBS isolates screened, lactoferrin reduced bacterial growth in 14 and biofilm formation in 21 strains. Stratifying the data, we observed that colonizing strains were more susceptible to the growth inhibition activity of lactoferrin than invasive isolates at lactoferrin concentrations between 250-750 µg/mL. Treatment with 750 µg/mL of lactoferrin resulted in differences in bacterial growth and biofilm formation between discrete sequence types. Differences in bacterial growth were also observed between capsular serotypes 1a and III. Maternally isolated strains were more susceptible to lactoferrin with respect to bacterial growth, but not biofilm formation, compared to neonatal sepsis isolates. Finally, high biofilm forming GBS strains were more impacted by lactoferrin across all isolates tested. Taken together, this study demonstrates that lactoferrin possesses antimicrobial and antibiofilm properties against a wide range of GBS isolates, with maternally isolated colonizing strains being the most susceptible.« less
  2. Abstract Perinatal infection with Streptococcus agalactiae , or Group B Streptococcus (GBS), is associated with preterm birth, neonatal sepsis, and stillbirth. Here, we study the interactions of GBS with macrophages, essential sentinel immune cells that defend the gravid reproductive tract. Transcriptional analyses of GBS-macrophage co-cultures reveal enhanced expression of a gene encoding a putative metal resistance determinant, cadD . Deletion of cadD reduces GBS survival in macrophages, metal efflux, and resistance to metal toxicity. In a mouse model of ascending infection during pregnancy, the ΔcadD strain displays attenuated bacterial burden, inflammation, and cytokine production in gestational tissues. Furthermore, depletion ofmore »host macrophages alters cytokine expression and decreases GBS invasion in a cadD -dependent fashion. Our results indicate that GBS cadD plays an important role in metal detoxification, which promotes immune evasion and bacterial proliferation in the pregnant host.« less
  3. ABSTRACT The success of Mycobacterium tuberculosis as a human pathogen is due in part to its ability to survive stress conditions, such as hypoxia or nutrient deprivation, by entering nongrowing states. In these low-metabolism states, M. tuberculosis can tolerate antibiotics and develop genetically encoded antibiotic resistance, making its metabolic adaptation to stress crucial for survival. Numerous bacteria, including M. tuberculosis , have been shown to reduce their rates of mRNA degradation under growth limitation and stress. While the existence of this response appears to be conserved across species, the underlying bacterial mRNA stabilization mechanisms remain unknown. To better understand themore »biology of nongrowing mycobacteria, we sought to identify the mechanistic basis of mRNA stabilization in the nonpathogenic model Mycobacterium smegmatis . We found that mRNA half-life was responsive to energy stress, with carbon starvation and hypoxia causing global mRNA stabilization. This global stabilization was rapidly reversed when hypoxia-adapted cultures were reexposed to oxygen, even in the absence of new transcription. The stringent response and RNase levels did not explain mRNA stabilization, nor did transcript abundance. This led us to hypothesize that metabolic changes during growth cessation impact the activities of degradation proteins, increasing mRNA stability. Indeed, bedaquiline and isoniazid, two drugs with opposing effects on cellular energy status, had opposite effects on mRNA half-lives in growth-arrested cells. Taken together, our results indicate that mRNA stability in mycobacteria is not directly regulated by growth status but rather is dependent on the status of energy metabolism. IMPORTANCE The logistics of tuberculosis therapy are difficult, requiring multiple drugs for many months. Mycobacterium tuberculosis survives in part by entering nongrowing states in which it is metabolically less active and thus less susceptible to antibiotics. Basic knowledge on how M. tuberculosis survives during these low-metabolism states is incomplete, and we hypothesize that optimized energy resource management is important. Here, we report that slowed mRNA turnover is a common feature of mycobacteria under energy stress but is not dependent on the mechanisms that have generally been postulated in the literature. Finally, we found that mRNA stability and growth status can be decoupled by a drug that causes growth arrest but increases metabolic activity, indicating that mRNA stability responds to metabolic status rather than to growth rate per se . Our findings suggest a need to reorient studies of global mRNA stabilization to identify novel mechanisms that are presumably responsible.« less
  4. Antimicrobial resistance is a world-wide health care crisis. New antimicrobials must both exhibit potency and thwart the ability of bacteria to develop resistance to them. We report the use of synthetic ionophores as a new approach to developing non-resistant antimicrobials and adjuvants. Most studies involving amphiphilic antimicrobials have focused on either developing synthetic amphiphiles that show ion transport, or developing non-cytotoxic analogs of such peptidic amphiphiles as colistin. We have rationally designed, prepared, and evaluated crown ether-based synthetic ionophores (‘hydraphiles’) that show selective ion transport through bilayer membranes and are toxic to bacteria. We report here that hydraphiles exhibit amore »broad range of antimicrobial properties and that they function as adjuvants in concert with FDA-approved antibiotics against multi-drug resistant (MDR) bacteria. Studies described herein demonstrate that benzyl C 14 hydraphile (BC 14 H) shows high efficacy as an antimicrobial. BC 14 H, at sub-MIC concentrations, forms aggregates of ∼200 nm that interact with the surface of bacteria. Surface-active BC 14 H then localizes in the bacterial membranes, which increases their permeability. As a result, antibiotic influx into the bacterial cytosol increases in the presence of BC n Hs. Efflux pump inhibition and accumulation of substrate was also observed, likely due to disruption of the cation gradient. As a result, BC 14 H recovers the activity of norfloxacin by 128-fold against resistant Staphylococcus aureus . BC 14 H shows extremely low resistance development and is less cytotoxic than colistin. Overall, synthetic ionophores represent a new scaffold for developing efficient and non-resistant antimicrobial-adjuvants.« less
  5. Destruction of pharmaceuticals excreted in urine can be an efficient approach to eliminate these environmental pollutants. However, urine contains high concentrations of chloride, ammonium, and bicarbonate, which may hinder treatment processes. This study evaluated the application of ferrate(VI) (FeVIO42-, Fe(VI)) to oxidize pharmaceuticals (carbamazepine (CBZ), naproxen (NAP), trimethoprim (TMP) and sulfonamide antibiotics (SAs)) in synthetic hydrolyzed human urine and uncovered new effects from urine’s major inorganic constituents. Chloride slightly decreased pharmaceuticals’ removal rate by Fe(VI) due to the ionic strength effect. Ammonium (0.5 M) in undiluted hydrolyzed urine posed a strong scavenging effect, but lower concentrations (≤ 0.25 M) ofmore »ammonium enhanced the pharmaceuticals’ degradation by 300 µM Fe(VI), likely due to the reactive ammonium complex form of Fe(V)/Fe(IV). For the first time, bicarbonate was found to significantly promote the oxidation of aniline-containing SAs by Fe(VI) and alter the reaction stoichiometry of Fe(VI) and SA from 4:1 to 3:1. In-depth investigation indicated that bicarbonate not only changed the Fe(VI):SA complexation ratio from 1:2 to 1:1, but provided stabilizing effect for Fe(V) intermediate formed in situ, enabling its degradation of SAs. Overall, results of this study suggested that Fe(VI) is a promising oxidant for the removal of pharmaceuticals in hydrolyzed urine.« less