Abstract Group BStreptococcus(GBS) is an encapsulated Gram‐positive bacterial pathogen that causes severe perinatal infections. Human milk oligosaccharides (HMOs) are short‐chain sugars that have recently been shown to possess antimicrobial and anti‐biofilm activity against a variety of bacterial pathogens, including GBS. We have expanded these studies to demonstrate that HMOs can inhibit and dismantle biofilm in both invasive and colonizing strains of GBS. A cohort of 30 diverse strains of GBS were analyzed for susceptibility to HMO‐dependent biofilm inhibition or destruction. HMOs were significantly effective at inhibiting biofilm in capsular‐type‐ and sequence‐type‐specific fashion, with significant efficacy in CpsIb, CpsII, CpsIII, CpsV, and CpsVI strains as well as ST‐1, ST‐12, ST‐19, and ST‐23 strains. Interestingly, CpsIa as well as ST‐7 and ST‐17 were not susceptible to the anti‐biofilm activity of HMOs, underscoring the strain‐specific effects of these important antimicrobial molecules against the perinatal pathogenStreptococcus agalactiae. 
                        more » 
                        « less   
                    
                            
                            Galacto‐Oligosaccharide Supplementation Modulates Pathogen‐Commensal Competition between Streptococcus agalactiae and Streptococcus salivarius
                        
                    
    
            Abstract The members of the infant microbiome are governed by feeding method (breastmilk vs. formula). Regardless of the source of nutrition, a competitive growth advantage can be provided to commensals through prebiotics – either human milk oligosaccharides (HMOs) or plant oligosaccharides that are supplemented into formula. To characterize how prebiotics modulate commensal – pathogen interactions, we have designed and studied a minimal microbiome where a pathogen,Streptococcus agalactiaeengages with a commensal,Streptococcus salivarius. We discovered that whileS. agalactiaesuppresses the growth ofS. salivariusvia increased lactic acid production, galacto‐oligosaccharides (GOS) supplementation reverses the effect. This result has major implications in characterizing how single species survive in the gut, what niche they occupy, and how they engage with other community members. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1847804
- PAR ID:
- 10364284
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemBioChem
- Volume:
- 23
- Issue:
- 3
- ISSN:
- 1439-4227
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Streptococcus agalactiaeor Group BStreptococcus(GBS) is a Gram‐positive bacterial pathobiont that is the etiological cause of severe perinatal infections. GBS can colonize the vagina of pregnant patients and invade tissues causing ascending infections of the gravid reproductive tract that lead to adverse outcomes including preterm birth, neonatal sepsis, and maternal or fetal demise. Additionally, transmission of GBS during labor or breastfeeding can also cause invasive infections of neonates and infants. However, human milk has also been shown to have protective effects against infection; a characteristic that is likely derived from antimicrobial and immunomodulatory properties of molecules that comprise human milk. Recent evidence suggests that human milk oligosaccharides (HMOs), short‐chain sugars that comprise 8–20 % of breast milk, have antimicrobial and anti‐biofilm activity against GBS and other bacterial pathogens. Additionally, HMOs have been shown to potentiate the activity of antibiotics against GBS. This review presents the most recent published work that studies the interaction between HMOs and GBS.more » « less
- 
            ABSTRACT Adjuvants can be used to potentiate the function of antibiotics whose efficacy has been reduced by acquired or intrinsic resistance. In the present study, we discovered that human milk oligosaccharides (HMOs) sensitize strains of group B Streptococcus (GBS) to trimethoprim (TMP), an antibiotic to which GBS is intrinsically resistant. Reductions in the MIC of TMP reached as high as 512-fold across a diverse panel of isolates. To better understand HMOs’ mechanism of action, we characterized the metabolic response of GBS to HMO treatment using ultrahigh-performance liquid chromatography–high-resolution tandem mass spectrometry (UPLC-HRMS/MS) analysis. These data showed that when challenged by HMOs, GBS undergoes significant perturbations in metabolic pathways related to the biosynthesis and incorporation of macromolecules involved in membrane construction. This study represents reports the metabolic characterization of a cell that is perturbed by HMOs. IMPORTANCE Group B Streptococcus is an important human pathogen that causes serious infections during pregnancy which can lead to chorioamnionitis, funisitis, premature rupture of gestational membranes, preterm birth, neonatal sepsis, and death. GBS is evolving antimicrobial resistance mechanisms, and the work presented in this paper provides evidence that prebiotics such as human milk oligosaccharides can act as adjuvants to restore the utility of antibiotics.more » « less
- 
            O'Toole, George (Ed.)ABSTRACT Bacteroidesspecies are successful colonizers of the human colon and can utilize a wide variety of complex polysaccharides and oligosaccharides that are indigestible by the host. To do this, they use enzymes encoded in polysaccharide utilization loci (PULs). While recent work has uncovered the PULs required for the use of some polysaccharides, howBacteroidesutilize smaller oligosaccharides is less well studied. Raffinose family oligosaccharides (RFOs) are abundant in plants, especially legumes, and consist of variable units of galactose linked by α-1,6 bonds to a sucrose (glucose α-1-β-2 fructose) moiety. Previous work showed that an α-galactosidase, BT1871, is required for RFO utilization inBacteroides thetaiotaomicron. Here, we identify two different types of mutations that increaseBT1871mRNA levels and improveB. thetaiotaomicrongrowth on RFOs. First, a novel spontaneous duplication ofBT1872andBT1871places these genes under the control of a ribosomal promoter, driving highBT1871transcription. Second, nonsense mutations in a gene encoding the PUL24 anti-sigma factor likewise increaseBT1871transcription. We then show that hydrolases from PUL22 work together with BT1871 to break down the sucrose moiety of RFOs and determine that the master regulator of carbohydrate utilization (BT4338) plays a role in RFO utilization inB. thetaiotaomicron. Examining the genomes of otherBacteroidesspecies, we found homologs of BT1871 in a subset and showed that representative strains of species with a BT1871 homolog grew better on melibiose than species that lack a BT1871 homolog. Altogether, our findings shed light on how an important gut commensal utilizes an abundant dietary oligosaccharide. IMPORTANCEThe gut microbiome is important in health and disease. The diverse and densely populated environment of the gut makes competition for resources fierce. Hence, it is important to study the strategies employed by microbes for resource usage. Raffinose family oligosaccharides are abundant in plants and are a major source of nutrition for the microbiota in the colon since they remain undigested by the host. Here, we study how the model commensal organism,Bacteroides thetaiotaomicronutilizes raffinose family oligosaccharides. This work highlights how an important member of the microbiota uses an abundant dietary resource.more » « less
- 
            Traxler, Matthew F. (Ed.)ABSTRACT Polymicrobial biofilms are present in many environments particularly in the human oral cavity where they can prevent or facilitate the onset of disease. While recent advances have provided a clear picture of both the constituents and their biogeographic arrangement, it is still unclear what mechanisms of interaction occur between individual species in close proximity within these communities. In this study, we investigated two mechanisms of interaction between the highly abundant supragingival plaque (SUPP) commensalCorynebacterium matruchotiiandStreptococcus mitiswhich are directly adjacent/attachedin vivo. We discovered thatC. matruchotiienhanced the fitness of streptococci dependent on its ability to detoxify streptococcal-produced hydrogen peroxide and its ability to oxidize lactate also produced by streptococci. We demonstrate that the fitness of adjacent streptococci was linked to that ofC. matruchotiiand that these mechanisms support the previously described “corncob” arrangement between these species but that this is favorable only in aerobic conditions. Furthermore, we utilized scanning electrochemical microscopy to quantify lactate production and consumption between individual bacterial cells for the first time, revealing that lactate oxidation provides a fitness benefit toS. mitisnot due to pH mitigation. This study describes mechanistic interactions between two highly abundant human commensals that can explain their observedin vivospatial arrangements and suggest a way by which they may help preserve a healthy oral bacterial community. IMPORTANCEAs the microbiome era matures, the need for mechanistic interaction data between species is crucial to understand how stable microbiomes are preserved, especially in healthy conditions where the microbiota could help resist opportunistic or exogenous pathogens. Here we reveal multiple mechanisms of interaction between two commensals that dictate their biogeographic relationship to each other in previously described structures in human supragingival plaque. Using a novel variation for chemical detection, we observed metabolite exchange between individual bacterial cells in real time validating the ability of these organisms to carry out metabolic crossfeeding at distal and temporal scales observedin vivo. These findings reveal one way by which these interactions are both favorable to the interacting commensals and potentially the host.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
