skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Glacial erosion: status and outlook
Abstract Glacier-erosion rates range across orders of magnitude, and much of this variation cannot be attributed to basal sliding rates. Subglacial till acts as lubricating ‘fault gouge’ or ‘sawdust’, and must be removed for rapid subglacial bedrock erosion. Such erosion occurs especially where and when moulin-fed streams access the bed and are unconstrained by supercooling or other processes. Streams also may directly erode bedrock, likely with strong time-evolution. Erosion is primarily by quarrying, aided by strong fluctuations in the water system driven by variable surface melt and by subglacial earthquakes. Debris-bed friction significantly affects abrasion, quarrying and general glacier flow. Frost heave drives cirque headwall erosion as winter cold air enters bergschrunds, creating temperature gradients to drive water flow along premelted films to growing ice lenses that fracture rock, and the glacier removes the resulting blocks. Recent subglacial bedrock erosion and sediment flux are in many cases much higher than long-term averages. Over glacial cycles, evolution of glacial-valley form feeds back strongly on erosion and deposition. Most of this is poorly quantified, with parts open to argument. Glacial erosion and interactions are important to tectonic and volcanic processes as well as climate and biogeochemical fluxes, motivating vigorous research.  more » « less
Award ID(s):
1738934
PAR ID:
10139855
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Annals of Glaciology
ISSN:
0260-3055
Page Range / eLocation ID:
1 to 13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Quarrying and abrasion are the two principal processes responsible for glacial erosion of bedrock. The morphologies of glacier hard beds depend on the relative effectiveness of these two processes, as abrasion tends to smooth bedrock surfaces and quarrying tends to roughen them. Here we analyze concentrations of bedrock discontinuities in the Tsanfleuron forefield, Switzerland, to help determine the geologic conditions that favor glacial quarrying over abrasion. Aerial discontinuity concentrations are measured from scaled drone-based photos where fractures and bedding planes in the bedrock are manually mapped. A Tukey honest significant difference test indicates that aerial concentration of bed-normal bedrock discontinuities is not significantly different between quarried and non-quarried areas of the forefield. Thus, an alternative explanation is needed to account for the spatial variability of quarried areas. To investigate the role that bed-parallel discontinuities might play in quarrying, we use a finite element model to simulate bed-normal fracture propagation within a stepped bed with different step heights. Results indicate that higher steps (larger spacing of bed-parallel discontinuities) propagate bed-normal fractures more readily than smaller steps. Thus, the spacing of bed-parallel discontinuities could exert strong control on quarrying by determining the rate that blocks can be loosened from the host rock. 
    more » « less
  2. Abstract The morphology of glacier beds is a first‐order control on their slip speeds and consequent rates of subglacial erosion. As such, constraining the range of bed shapes expected beneath glaciers will improve estimates of glacier slip speeds. To estimate the variability of subglacial bed morphology, we construct 10 high‐resolution (10 cm) digital elevation models of proglacial areas near current glacier margins from point clouds produced through a combination of terrestrial laser scanning and photogrammetry techniques. The proglacial areas are located in the Swiss Alps and the Canadian Rockies and consist of predominantly debris‐free bedrock of variable lithology (igneous, sedimentary, and metamorphic). We measure eight different spatial parameters intended to describe bed morphologies generated beneath glaciers. Using probability density functions, Bhattacharyya coefficients, principal component analysis, and Bayesian statistical models we investigate the significance of these spatial parameters. We find that the parameters span similar ranges, but the means and standard deviations of the parameter probability density functions are commonly distinct. These results indicate that glacier flow over bedrock may lead to a convergence toward a common bed morphology. However, distinct properties associated with each location prevent morphologies from being uniform. 
    more » « less
  3. Abstract Abrasion acts to smooth glacial terrains and leaves behind linear scratch-like features (striations) on bedrock landscapes. Striations are often used as measures of glacier flow directions, but their morphology can also provide information about the subglacial stress conditions that produced the features. While striations are often abundant in the field, the processes that create them can be opaque and hard to examine in situ because they occur under thick layers of flowing ice. To alleviate that difficulty and provide information for interpretation of the populations of striations that are observed in the field, we conducted a set of laboratory experiments in which a ring of temperate debris-laden ice was slid atop a planar marble bed under various contact force conditions that led to the creation of hundreds of striations. During the experiment, numerous glaciological properties were continuously measured, including the resistive drag. Following the completion of the experiments, the marble beds were extracted, and the striations were measured for length and categorized by morphological type, and a subset was measured using a high-resolution white-light profilometer. These experiments showed that, similar to field observations, type 2 striations were initially the most abundant; however, we found that type 3 striations became the most abundant at large displacements. We found good correlation between the abundance of striations as a function of displacement and measured drag as a function of displacement. When taken together, these results suggest that, in natural settings, ice flow around small roughness elements in glacier beds can “reset” the basal debris field, causing striations to become more abundant in their wake. As roughness is linked to quarrying, abrasion rates may increase in areas of increased quarrying. 
    more » « less
  4. Abstract Malaspina Glacier, located on the coast of southern Alaska, is the world's largest piedmont glacier. A narrow ice‐cored foreland zone undergoing rapid thermokarst erosion separates the glacier from the relatively warm waters of the Gulf of Alaska. Glacier‐wide thinning rates for Malaspina are greater than 1 m/yr, and previous geophysical investigations indicated that bed elevation exceeds 300 m below sea level in some places. These observations together give rise to the question of glacial stability. To address this question, glacier evolution models are dependent upon detailed observations of Malaspina's subglacial topography. Here, we map 2,000 line‐km of the glacier's bed using airborne radar sounding data collected by NASA's Operation IceBridge. When compared to gridded radar measurements, we find that glaciological models overestimate Malaspina's volume by more than 30%. While we report a mean bed elevation 100 m greater than previous models, we find that Malaspina inhabits a broad basin largely grounded below sea level. Several subglacial channels dissect the glacier's bed: the most prominent of these channels extends at least 35 km up‐glacier from the terminus toward the throat of Seward Glacier. Provided continued foreland erosion, an ice‐ocean connection may promote rapid retreat along these overdeepened subglacial channels, with a global sea‐level rise potential of 1.4 mm. 
    more » « less
  5. Abstract Bedforms of Thwaites Glacier, West Antarctica both record and affect ice flow, as shown by geophysical data and simple models. Thwaites Glacier flows across the tectonic fabric of the West Antarctic rift system with its bedrock highs and sedimentary basins. Swath radar and seismic surveys of the glacier bed have revealed soft‐sediment flutes 100 m or more high extending 15 km or more across basins downglacier from bedrock highs. Flutes end at prominent hard‐bedded moats on stoss sides of the next topographic highs. We use simple models to show that ice flow against topography increases pressure between ice and till upglacier along the bed over a distance that scales with the topography. In this basal zone of high pressure, ice‐contact water would be excluded, thus increasing basal drag by increasing ice‐till coupling and till flux, removing till to allow bedrock erosion that creates moats. Till carried across highlands would then be deposited in lee‐side positions forming bedforms that prograde downglacier over time, and that remain soft on top through feedbacks that match till‐deformational fluxes from well upglacier of the topography. The bedforms of the part of Thwaites surveyed here are prominent because ice flow has persisted over a long time on this geological setting, not because ice flow is anomalous. Bedform development likely has caused evolution of ice flow over time as till and lubricating water were redistributed, moats were eroded and bedforms grew. 
    more » « less