skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Character Identification Refined: A Proposal
Characters are a key element of narrative and so character identification plays an important role in automatic narrative understanding. Unfortunately, most prior work that incorporates character identification is not built upon a clear, theoretically grounded concept of character. They either take character identification for granted (e.g., using simple heuristics on referring expressions), or rely on simplified definitions that do not capture important distinctions between characters and other referents in the story. Prior approaches have also been rather complicated, relying, for example, on predefined case bases or ontologies. In this paper we propose a narratologically grounded definition of character for discussion at the workshop, and also demonstrate a preliminary yet straightforward supervised machine learning model with a small set of features that performs well on two corpora. The most important of the two corpora is a set of 46 Russian folktales, on which the model achieves an F1 of 0.81. Error analysis suggests that features relevant to the plot will be necessary for further improvements in performance.  more » « less
Award ID(s):
1749917
PAR ID:
10140302
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the First Workshop on Narrative Understanding
Page Range / eLocation ID:
12 - 18
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    One of the most fundamental elements of narrative is character: if we are to understand a narrative, we must be able to identify the characters of that narrative. Therefore, character identification is a critical task in narrative natural language understanding. Most prior work has lacked a narratologically grounded definition of character, instead relying on simplified or implicit definitions that do not capture essential distinctions between characters and other referents in narratives. In prior work we proposed a preliminary definition of character that was based in clear narratological principles: a character is an animate entity that is important to the plot. Here we flesh out this concept, demonstrate that it can be reliably annotated (0.78 Cohen’s κ), and provide annotations of 170 narrative texts, drawn from 3 different corpora, containing 1,347 character co-reference chains and 21,999 non-character chains that include 3,937 animate chains. Furthermore, we have shown that a supervised classifier using a simple set of easily computable features can effectively identify these characters (overall F1 of 0.90). A detailed error analysis shows that character identification is first and foremost affected by co-reference quality, and further, that the shorter a chain is the harder it is to effectively identify as a character. We release our code and data for the benefit of other researchers 
    more » « less
  2. Tracking characters and locations throughout a story can help improve the understanding of its plot structure. Prior research has analyzed characters and locations from text independently without grounding characters to their locations in narrative time. Here, we address this gap by proposing a new spatial relationship categorization task. The objective of the task is to assign a spatial relationship category for every character and location co-mention within a window of text, taking into consideration linguistic context, narrative tense, and temporal scope. To this end, we annotate spatial relationships in approximately 2500 book excerpts and train a model using contextual embeddings as features to predict these relationships. When applied to a set of books, this model allows us to test several hypotheses on mobility and domestic space, revealing that protagonists are more mobile than non-central characters and that women as characters tend to occupy more interior space than men. Overall, our work is the first step towards joint modeling and analysis of characters and places in narrative text. 
    more » « less
  3. Intelligent interactive narrative systems coordinate a cast of non-player characters to make the overall story experience meaningful for the player. Narrative generation involves a tradeoff between plot-structure requirements and quality of character behavior, as well as computational efficiency. We study this tradeoff using the example of benchmark problems for narrative planning algorithms. A typical narrative planning problem calls for a sequence of actions that leads to an overall plot goal being met, while also requiring each action to respect constraints that create the appearance of character autonomy. We consider simplified solution definitions that enforce only plot requirements or only character requirements, and we measure how often each of these definitions leads to a solution that happens to meet both types of requirements—i.e., the density with which narrative plans occur among plot- or character-requirement-satisfying sequences. We then investigate whether solution densities can guide the selection of narrative planning algorithms. We compare the performance of two search strategies: one that satisfies plot requirements first and checks character requirements afterward, and one that continuously verifies character requirements. Our results show that comparing solution densities does not by itself predict which of these search strategies will be more efficient in terms of search nodes visited, suggesting that other important factors exist. We discuss what some of these factors could be. Our work opens further investigation into characterizing narrative planning algorithms and how they interact with specific domains. The results also highlight the diversity and difficulty of solving narrative planning problems. 
    more » « less
  4. Recognizing the internal structure of events is a challenging language processing task of great importance for text understanding. We present a supervised model for automatically identifying when one event is a subevent of another. Building on prior work, we introduce several novel features, in particular discourse and narrative features, that significantly improve upon prior state-of-the-art performance. Error analysis further demonstrates the utility of these features. We evaluate our model on the only two annotated corpora with event hierarchies: HiEve and the Intelligence Community corpus. No prior system has been evaluated on both corpora. Our model outperforms previous systems on both corpora, achieving 0.74 BLANC F1 on the Intelligence Community corpus and 0.70 F1 on the HiEve corpus, respectively a 15 and 5 percentage point improvement over previous models. 
    more » « less
  5. What characters believe, how they act based on those beliefs, and how their beliefs are updated is an essential element of many stories. State-space narrative planning algorithms treat their search spaces like a set of temporally possible worlds. We present an extension that models character beliefs as epistemically possible worlds and describe how such a space is generated.We also present the results of an experiment which demonstrates that the model meets the expectations of a human audience. 
    more » « less