skip to main content

Title: Detecting Subevents using Discourse and Narrative Features
Recognizing the internal structure of events is a challenging language processing task of great importance for text understanding. We present a supervised model for automatically identifying when one event is a subevent of another. Building on prior work, we introduce several novel features, in particular discourse and narrative features, that significantly improve upon prior state-of-the-art performance. Error analysis further demonstrates the utility of these features. We evaluate our model on the only two annotated corpora with event hierarchies: HiEve and the Intelligence Community corpus. No prior system has been evaluated on both corpora. Our model outperforms previous systems on both corpora, achieving 0.74 BLANC F1 on the Intelligence Community corpus and 0.70 F1 on the HiEve corpus, respectively a 15 and 5 percentage point improvement over previous models.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
Page Range / eLocation ID:
4780 - 4790
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a novel approach to predicting source-and-target factuality by transforming it into a linearized tree generation task. Unlike previous work, our model and representation format fully account for the factuality tree structure, generating the full chain of nested sources instead of the last source only. Furthermore, our linearized tree representation significantly compresses the amount of tokens needed compared to other representations, allowing for fully end-to-end systems. We achieve state-of-the-art results on FactBank and the Modal Dependency Corpus, which are both corpora annotating source-and-target event factuality. Our results on fine-tuning validate the strong generality of the proposed linearized tree generation task, which can be easily adapted to other corpora with a similar structure. We then present BeLeaf, a system which directly leverages the linearized tree representation to create both sentence level and document level visualizations. Our system adds several missing pieces to the source-and-target factuality task such as coreference resolution and event head word to syntactic span conversion. Our demo code is available on and our video is available on 
    more » « less
  2. Characters are a key element of narrative and so character identification plays an important role in automatic narrative understanding. Unfortunately, most prior work that incorporates character identification is not built upon a clear, theoretically grounded concept of character. They either take character identification for granted (e.g., using simple heuristics on referring expressions), or rely on simplified definitions that do not capture important distinctions between characters and other referents in the story. Prior approaches have also been rather complicated, relying, for example, on predefined case bases or ontologies. In this paper we propose a narratologically grounded definition of character for discussion at the workshop, and also demonstrate a preliminary yet straightforward supervised machine learning model with a small set of features that performs well on two corpora. The most important of the two corpora is a set of 46 Russian folktales, on which the model achieves an F1 of 0.81. Error analysis suggests that features relevant to the plot will be necessary for further improvements in performance. 
    more » « less
  3. We introduce a novel framework for delexicalized dependency parsing in a new language. We show that useful features of the target language can be extracted automatically from an unparsed corpus, which consists only of gold part-of-speech (POS) sequences. Providing these features to our neural parser enables it to parse sequences like those in the corpus. Strikingly, our system has no supervision in the target language. Rather, it is a multilingual system that is trained end-to-end on a variety of other languages, so it learns a feature extractor that works well. We show experimentally across multiple languages: (1) Features computed from the unparsed corpus improve parsing accuracy. (2) Including thousands of synthetic languages in the training yields further improvement. (3) Despite being computed from unparsed corpora, our learned task-specific features beat previous work’s interpretable typological features that require parsed corpora or expert categorization of the language. Our best method improved attachment scores on held-out test languages by an average of 5.6 percentage points over past work that does not inspect the unparsed data (McDonald et al., 2011), and by 20.7 points over past “grammar induction” work that does not use training languages (Naseem et al., 2010). 
    more » « less
  4. null (Ed.)
    In specific domains, such as procedural scientific text, human labeled data for shallow semantic parsing is especially limited and expensive to create. Fortunately, such specific domains often use rather formulaic writing, such that the different ways of expressing relations in a small number of grammatically similar labeled sentences may provide high coverage of semantic structures in the corpus, through an appropriately rich similarity metric. In light of this opportunity, this paper explores an instance-based approach to the relation prediction sub-task within shallow semantic parsing, in which semantic labels from structurally similar sentences in the training set are copied to test sentences. Candidate similar sentences are retrieved using SciBERT embeddings. For labels where it is possible to copy from a similar sentence we employ an instance level copy network, when this is not possible, a globally shared parametric model is employed. Experiments show our approach outperforms both baseline and prior methods by 0.75 to 3 F1 absolute in the Wet Lab Protocol Corpus and 1 F1 absolute in the Materials Science Procedural Text Corpus. 
    more » « less
  5. Generating a high-quality explainable summary of a multi-review corpus can help people save time in reading the reviews. With natural language processing and text clustering, people can generate both abstractive and extractive summaries on a corpus containing up to 967 product reviews (Moody et al. 2022). However, the overall quality of the summaries needs further improvement. Noticing that online reviews in the corpus come from a diverse population, we take an approach of removing irrelevant human factors through pre-processing. Apply available pre-trained models together with reference based and reference free metrics, we filter out noise in each review automatically prior to summary generation. Our computational experiments evident that one may significantly improve the overall quality of an explainable summary from such a pre-processed corpus than from the original one. It is suggested of applying available high-quality pre-trained tools to filter noises rather than start from scratch. Although this work is on the specific multi-review corpus, the methods and conclusions should be helpful for generating summaries for other multi-review corpora.

    more » « less