skip to main content


Title: LBE: A Computational Load Balancing Algorithm for Speeding up Parallel Peptide Search in Mass-Spectrometry Based Proteomics
The most commonly employed method for peptide identification in mass-spectrometry based proteomics involves comparing experimentally obtained tandem MS/MS spectra against a set of theoretical MS/MS spectra. The theoretical MS/MS spectra data are predicted using protein sequence database. Most state-of-the-art peptide search algorithms index theoretical spectra data to quickly filter-in the relevant (similar) indexed spectra when searching an experimental MS/MS spectrum. Data filtration substantially reduces the required number of computationally expensive spectrum-to-spectrum comparison operations. However, the number of predicted (and indexed) theoretical spectra grows exponentially with increase in post-translational modifications creating a memory and I/O bottleneck. In this paper, we present a parallel algorithm, called LBE, for efficient partitioning of theoretical spectra data on a distributed-memory architecture. Our proposed algorithm first groups the similar theoretical spectra. The groups are then finely split across the system allowing machines to perform almost equal amount of work when querying a MS/MS spectrum. Our results show that the compute load imbalance using LBE based data distribution is ≤ 20% allowing speedups of order of magnitudes over existing methods. The proposed algorithm has been implemented on a compute cluster using MPI library. Experimental results for increasing index sizes are reported in terms of execution time, speedups and memory footprint. To the best of our knowledge, LBE is the first load-balancing technique for MS/MS proteomics data on memory-distributed clusters that incorporates proteomics domain knowledge for efficient load-balancing. Source code is made available at: https://github.com/pcdslab/lbdslim/tree/mpi.  more » « less
Award ID(s):
1925960
NSF-PAR ID:
10140336
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)
Page Range / eLocation ID:
191 to 198
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Database search is the most commonly employed method for identification of peptides from MS/MS spectra data. The search involves comparing experimentally obtained MS/MS spectra against a set of theoretical spectra predicted from a protein sequence database. One of the most commonly employed similarity metrics for spectral comparison is the shared-peak count between a pair of MS/MS spectra. Most modern methods index all generated fragment-ion data from theoretical spectra to speed up the shared peak count computations between a given experimental spectrum and all theoretical spectra. However, the bottleneck for this method is the gigantic memory footprint of fragment-ion index that leads to non-scalable solutions. In this paper, we present a novel data structure, called Compact Fragment-Ion Index Representation (CFIR), that efficiently compresses highly redundant ion-mass information in the data to reduce the index size. Our proposed data structure outperforms all existing fragment-ion indexing data structures by at least 2× in memory consumption while exhibiting the same time complexity for index construction and peptide search. The results also show comparable indexing speed, search speed and speedup scalability for CFIR-index and the state-of-the-art algorithms. 
    more » « less
  2. Lisacek, Frederique (Ed.)
    Historically, the database search algorithms have been the de facto standard for inferring peptides from mass spectrometry (MS) data. Database search algorithms deduce peptides by transforming theoretical peptides into theoretical spectra and matching them to the experimental spectra. Heuristic similarity-scoring functions are used to match an experimental spectrum to a theoretical spectrum. However, the heuristic nature of the scoring functions and the simple transformation of the peptides into theoretical spectra, along with noisy mass spectra for the less abundant peptides, can introduce a cascade of inaccuracies. In this paper, we design and implement a Deep Cross-Modal Similarity Network called SpeCollate , which overcomes these inaccuracies by learning the similarity function between experimental spectra and peptides directly from the labeled MS data. SpeCollate transforms spectra and peptides into a shared Euclidean subspace by learning fixed size embeddings for both. Our proposed deep-learning network trains on sextuplets of positive and negative examples coupled with our custom-designed SNAP-loss function. Online hardest negative mining is used to select the appropriate negative examples for optimal training performance. We use 4.8 million sextuplets obtained from the NIST and MassIVE peptide libraries to train the network and demonstrate that for closed search, SpeCollate is able to perform better than Crux and MSFragger in terms of the number of peptide-spectrum matches (PSMs) and unique peptides identified under 1% FDR for real-world data. SpeCollate also identifies a large number of peptides not reported by either Crux or MSFragger. To the best of our knowledge, our proposed SpeCollate is the first deep-learning network that can determine the cross-modal similarity between peptides and mass-spectra for MS-based proteomics. We believe SpeCollate is significant progress towards developing machine-learning solutions for MS-based omics data analysis. SpeCollate is available at https://deepspecs.github.io/ . 
    more » « less
  3. Due to the developments of topographic techniques, clear satellite imagery, and various means for collecting information, geospatial datasets are growing in volume, complexity, and heterogeneity. For efficient execution of spatial computations and analytics on large spatial data sets, parallel processing is required. To exploit fine-grained parallel processing in large scale compute clusters, partitioning in a load-balanced way is necessary for skewed datasets. In this work, we focus on spatial join operation where the inputs are two layers of geospatial data. Our partitioning method for spatial join uses Adaptive Partitioning (ADP) technique, which is based on Quadtree partitioning. Unlike existing partitioning techniques, ADP partitions the spatial join workload instead of partitioning the individual datasets separately to provide better load-balancing. Based on our experimental evaluation, ADP partitions spatial data in a more balanced way than Quadtree partitioning and Uniform grid partitioning. ADP uses an output-sensitive duplication avoidance technique which minimizes duplication of geometries that are not part of spatial join output. In a distributed memory environment, this technique can reduce data communication and storage requirements compared to traditional methods. To improve the performance of ADP, an MPI+Threads based parallelization is presented. With ParADP, a pair of real world datasets, one with 717 million polylines and another with 10 million polygons, is partitioned into 65,536 grid cells within 7 seconds. ParADP performs well with both good weak scaling up to 4,032 CPU cores and good strong scaling up to 4,032 CPU cores. 
    more » « less
  4. Abstract

    We introduce theReverseSpatial Top-kKeyword (RSK)query, which is defined as:given a query term q, an integer k and a neighborhood size find all the neighborhoods of that size where q is in the top-k most frequent terms among the social posts in those neighborhoods. An obvious approach would be to partition the dataset with a uniform grid structure of a given cell size and identify the cells where this term is in the top-k most frequent keywords. However, this answer would be incomplete since it only checks for neighborhoods that are perfectly aligned with the grid. Furthermore, for every neighborhood (square) that is an answer, we can define infinitely more result neighborhoods by minimally shifting the square without including more posts in it. To address that, we need to identify contiguous regions where any point in the region can be the center of a neighborhood that satisfies the query. We propose an algorithm to efficiently answer an RSK query using an index structure consisting of a uniform grid augmented by materialized lists of term frequencies. We apply various optimizations that drastically improve query latency against baseline approaches. We also provide a theoretical model to choose the optimal cell size for the index to minimize query latency. We further examine a restricted version of the problem (RSKR) that limits the scope of the answer and propose efficientapproximatealgorithms. Finally, we examine how parallelism can improve performance by balancing the workload using a smartload slicingtechnique. Extensive experimental performance evaluation of the proposed methods using real Twitter datasets and crime report datasets, shows the efficiency of our optimizations and the accuracy of the proposed theoretical model.

     
    more » « less
  5. Spatial join is an important operation for combining spatial data. Parallelization is essential for improving spatial join performance. However, load imbalance due to data skew limits the scalability of parallel spatial join. There are many work sharing techniques to address this problem in a parallel environment. One of the techniques is to use data and space partitioning and then scheduling the partitions among threads/processes with the goal of minimizing workload differences across threads/processes. However, load imbalance still exists due to differences in join costs of different pairs of input geometries in the partitions. For the load imbalance problem, we have designed a work stealing spatial join system (WSSJ-DM) on a distributed memory environment. Work stealing is an approach for dynamic load balancing in which an idle processor steals computational tasks from other processors. This is the first work that uses work stealing concept (instead of work sharing) to parallelize spatial join computation on a large compute cluster. We have evaluated the scalability of the system on shared and distributed memory. Our experimental evaluation shows that work stealing is an effective strategy. We compared WSSJ-DM with work sharing implementations of spatial join on a high performance computing environment using partitioned and un-partitioned datasets. Static and dynamic load balancing approaches were used for comparison. We study the effect of memory affinity in work stealing operations involved in spatial join on a multi-core processor. WSSJ-DM performed spatial join using ST_Intersection on Lakes (8.4M polygons) and Parks (10M polygons) in 30 seconds using 35 compute nodes on a cluster (1260 CPU cores). A work sharing Master-Worker implementation took 160 seconds in contrast. 
    more » « less