We report the growth of carbon dioxide (CO 2 ) whiskers at low temperatures (−70 °C to −65 °C) and moderate pressure (4.4 to 1.0 bar). Their axial growth was assessed by optical video analysis. The identities of these whiskers were confirmed as CO 2 solids by Raman spectroscopy. A vapor–solid growth mechanism was proposed based on the influence of the relative humidity on the growth.
more »
« less
Infrared-active phonon modes in single-crystal thorium dioxide and uranium dioxide
- Award ID(s):
- 1808715
- PAR ID:
- 10140596
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 127
- Issue:
- 12
- ISSN:
- 0021-8979
- Page Range / eLocation ID:
- Article No. 125103
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The hydrolysis–condensation reaction of TiO 2 was adapted to the phase inversion temperature (PIT)-nano-emulsion method as a low energy approach to gain control over the size and phase purity of the resulting metal oxide particles. Three different PIT-nano-emulsion syntheses were designed, each one intended to isolate high purity rutile, anatase, and brookite phase particles. Three different emulsion systems were prepared, with a pH of either strongly acidic (H 2 O : HNO 3 , pH ∼0.5), moderately acidic (H 2 O : isopropanol, pH ∼4.5), or alkaline (H 2 O : NaOH, pH ∼12). PIT-nano-emulsion syntheses of the amorphous TiO 2 particles were conducted under these conditions, resulting in average particle diameter distributions of ∼140 d nm (strongly acidic), ∼60 d nm (moderately acidic), and ∼460 d nm (alkaline). Different thermal treatments were performed on the amorphous particles obtained from the PIT-nano-emulsion syntheses. Raman spectroscopy and powder X-ray diffraction (PXRD) were employed to corroborate that the thermally treated particles under H 2 O : HNO 3 (at 850 °C), H 2 O : NaOH (at 400 °C), and H 2 O : isopropanol (at 200 °C) yielded highly-pure rutile, anatase, and brookite phases, respectively. Herein, an experimental approach based on the PIT-nano-emulsion method is demonstrated to synthesize phase-controlled TiO 2 particles with high purity employing fewer toxic compounds, reducing the quantity of starting materials, and with a minimum energy input, particularly for the almost elusive brookite phase.more » « less
An official website of the United States government
