skip to main content


Search for: All records

Award ID contains: 1808715

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Designing broadband enhanced chirality is of strong interest to the emerging fields of chiral chemistry and sensing, or to control the spin orbital momentum of photons in recently introduced nanophotonic chiral quantum and classical optical applications. However, chiral light‐matter interactions have an extremely weak nature, are difficult to control and enhance, and cannot be made tunable or broadband. In addition, planar ultrathin nanophotonic structures to achieve strong, broadband, and tunable chirality at the technologically important visible to ultraviolet spectrum still remain elusive. Here, these important problems are tackled by experimentally demonstrating and theoretically verifying spectrally tunable, extremely large, and broadband chiroptical response by nanohelical metamaterials. The reported new designs of all‐dielectric and dielectric‐metallic (hybrid) plasmonic metamaterials permit the largest and broadest ever measured chiral Kuhn's dissymmetry factor achieved by a large‐scale nanophotonic structure. In addition, the strong circular dichroism of the presented bottom‐up fabricated optical metamaterials can be tuned by varying their dimensions and proportions between their dielectric and plasmonic helical subsections. The currently demonstrated ultrathin optical metamaterials are expected to provide a substantial boost to the developing field of chiroptics leading to significantly enhanced and broadband chiral light‐matter interactions at the nanoscale.

     
    more » « less
  2. Abstract

    Here we present the use of Fabry-Pérot enhanced terahertz (THz) Mueller matrix ellipsometry to measure an electromagnon excitation in monoclinic cupric oxide (CuO). As a magnetically induced ferroelectric multiferroic, CuO exhibits coupling between electric and magnetic order. This gives rise to special quasiparticle excitations at THz frequencies called electromagnons. In order to measure the electromagnons in CuO, we exploit single-crystal CuO as a THz Fabry-Pérot cavity to resonantly enhance the excitation’s signature. This enhancement technique enables the complex index of refraction to be extracted. We observe a peak in the absorption coefficient near 0.705 THz and 215 K, which corresponds to the electromagnon excitation. This absorption peak is observed along only one major polarizability axis in the monoclinic a–c plane. We show the excitation can be represented using the Lorentz oscillator model, and discuss how these Lorentz parameters evolve with temperature. Our findings are in excellent agreement with previous characterizations by THz time-domain spectroscopy (THz-TDS), which demonstrates the validity of this enhancement technique.

     
    more » « less
  3. Recently, broken symmetry within crystals has been igniting tremendous research interest since it can be utilized to effectively manipulate the propagation of photons. In particular, low-symmetry Bravais crystals can support hyperbolic shear polaritons (HShPs), holding great promise for technological upgrading on the emerging research area of spinoptics. Herein, an Otto-type multilayer structure consisting of KRS5 prism, sensing medium, and monoclinic β-Ga2O3 crystal is designed to ameliorate the photonic spin Hall effect (PSHE). The surface of β-Ga2O3 is the monoclinic (010) plane (x-y plane). We show that giant spin Hall shifts with three (or two) orders of magnitude of the incident wavelength are obtained in the in-plane (or transverse) directions. The azimuthal dispersions of photonic spin Hall shifts present non‐mirror‐symmetric patterns at tuning the rotation angle of β-Ga2O3 around the z axis in plane. All of these exotic optical properties are closely correlated with the broken crystal lattice symmetry and the incurred excitation of HShPs in monoclinic β-Ga2O3 crystal. By virtue of the remarkably enhanced PSHE, our proposed Otto-type multilayer structure shows a superior biosensing performance in which the maximum sensitivity is two orders of magnitude larger than previously reported PSHE biosensors based on two-dimensional materials. In addition, the optimized physical and structural parameters including the incident angle, excitation wavelength, azimuth angle and doping concentration of β-Ga2O3, thickness and refractive index of sensing medium are also investigated and given. This work unequivocally confirms the strong influence of crystal symmetry on the PSHE, shedding important insights into understanding the rich modulation of spin-orbit interaction of light via shear polaritons and therefore facilitating potential applications in photoelectronic devices. 
    more » « less
  4. Previously, the infrared permittivity tensor of monoclinic β-Ga 2 O 3 crystals has been determined using ellipsometry reflection measurements from two differently oriented monoclinic β-Ga 2 O 3 crystals with surfaces parallel to (010) and (−201). The (010) surface places the crystallographic a-c plane in the table of the instrument. The permittivity tensor consists of four complex values, and in order to compute it, four or more combinations of measurements are required at selected table rotations and incidence angles. However, the (010) orientation also places the transverse optical (TO) modes with Au symmetry parallel to the z-axis of the instrument, and we find that these modes are not fully excited and, hence, not measurable due to underlying selection rules. This makes additional measurements on surfaces other than (010) necessary. The second orientation has been the (−201) crystal, which places the crystallographic b axis in the plane of the table to access the transverse Au phonons. In prior work, the overall tensor has been determined by combining measurements of the two crystal orientations [Schubert et al., Phys. Rev. B 93, 125209 (2016)]. The goal of the work here is to find single crystal orientations for which all TO modes can be determined from measurements. The use of a set of measurements employed for such a single crystal is inextricably linked to the choice of incidence angles and table rotations. Consequently, determining suitable angles for these is linked to the selection of a crystal orientation, which is, therefore, an integral part of the overall goal. The TO contribution to the permittivity strongly dominates at or near the TO mode wavenumber resonances and, therefore, are used in this work to identify suitable orientations for a single crystal. Any such crystal orientation will also provide measurements useful to compute permittivity across the entire measured wavenumber range. In principle, any crystal orientation that does not place the direction of any TO mode at or near the z-axis may be suitable due to the underlying physics and mathematics of the problem. We discuss which of these measurement parameters contain the most sensitivity for the (111) orientation. For accuracy, we seek the best or very good orientations. Our investigation follows a previously demonstrated approach where at a single wavelength, the full tensor of an orthorhombic absorbing crystal was obtained from a low-symmetry surface of stibnite [Schubert and Dollase, Opt. Lett. 27, 2073 (2002)]. We discuss which of these measurement parameters contain the most sensitivity for the (111) orientation. The methods presented here will also be useful for other monoclinic materials as well as other materials of different crystal structures, including orthorhombic and triclinic materials. 
    more » « less
  5. We report the effect of remote surface optical (RSO) phonon scattering on carrier mobility in monolayer graphene gated by ferroelectric oxide. We fabricate monolayer graphene transistors back-gated by epitaxial (001) Ba0.6Sr0.4TiO3 films, with field effect mobility up to 23 000 cm2 V−1 s−1 achieved. Switching ferroelectric polarization induces nonvolatile modulation of resistance and quantum Hall effect in graphene at low temperatures. Ellipsometry spectroscopy studies reveal four pairs of optical phonon modes in Ba0.6Sr0.4TiO3, from which we extract RSO phonon frequencies. The temperature dependence of resistivity in graphene can be well accounted for by considering the scattering from the intrinsic longitudinal acoustic phonon and the RSO phonon, with the latter dominated by the mode at 35.8 meV. Our study reveals the room temperature mobility limit of ferroelectric-gated graphene transistors imposed by RSO phonon scattering.

     
    more » « less
  6. Abstract Magneto-optical (MO) effects, viz. magnetically induced changes in light intensity or polarization upon reflection from or transmission through a magnetic sample, were discovered over a century and a half ago. Initially they played a crucially relevant role in unveiling the fundamentals of electromagnetism and quantum mechanics. A more broad-based relevance and wide-spread use of MO methods, however, remained quite limited until the 1960s due to a lack of suitable, reliable and easy-to-operate light sources. The advent of Laser technology and the availability of other novel light sources led to an enormous expansion of MO measurement techniques and applications that continues to this day (see section 1). The here-assembled roadmap article is intended to provide a meaningful survey over many of the most relevant recent developments, advances, and emerging research directions in a rather condensed form, so that readers can easily access a significant overview about this very dynamic research field. While light source technology and other experimental developments were crucial in the establishment of today’s magneto-optics, progress also relies on an ever-increasing theoretical understanding of MO effects from a quantum mechanical perspective (see section 2), as well as using electromagnetic theory and modelling approaches (see section 3) to enable quantitatively reliable predictions for ever more complex materials, metamaterials, and device geometries. The latest advances in established MO methodologies and especially the utilization of the MO Kerr effect (MOKE) are presented in sections 4 (MOKE spectroscopy), 5 (higher order MOKE effects), 6 (MOKE microscopy), 8 (high sensitivity MOKE), 9 (generalized MO ellipsometry), and 20 (Cotton–Mouton effect in two-dimensional materials). In addition, MO effects are now being investigated and utilized in spectral ranges, to which they originally seemed completely foreign, as those of synchrotron radiation x-rays (see section 14 on three-dimensional magnetic characterization and section 16 on light beams carrying orbital angular momentum) and, very recently, the terahertz (THz) regime (see section 18 on THz MOKE and section 19 on THz ellipsometry for electron paramagnetic resonance detection). Magneto-optics also demonstrates its strength in a unique way when combined with femtosecond laser pulses (see section 10 on ultrafast MOKE and section 15 on magneto-optics using x-ray free electron lasers), facilitating the very active field of time-resolved MO spectroscopy that enables investigations of phenomena like spin relaxation of non-equilibrium photoexcited carriers, transient modifications of ferromagnetic order, and photo-induced dynamic phase transitions, to name a few. Recent progress in nanoscience and nanotechnology, which is intimately linked to the achieved impressive ability to reliably fabricate materials and functional structures at the nanoscale, now enables the exploitation of strongly enhanced MO effects induced by light–matter interaction at the nanoscale (see section 12 on magnetoplasmonics and section 13 on MO metasurfaces). MO effects are also at the very heart of powerful magnetic characterization techniques like Brillouin light scattering and time-resolved pump-probe measurements for the study of spin waves (see section 7), their interactions with acoustic waves (see section 11), and ultra-sensitive magnetic field sensing applications based on nitrogen-vacancy centres in diamond (see section 17). Despite our best attempt to represent the field of magneto-optics accurately and do justice to all its novel developments and its diversity, the research area is so extensive and active that there remains great latitude in deciding what to include in an article of this sort, which in turn means that some areas might not be adequately represented here. However, we feel that the 20 sections that form this 2022 magneto-optics roadmap article, each written by experts in the field and addressing a specific subject on only two pages, provide an accurate snapshot of where this research field stands today. Correspondingly, it should act as a valuable reference point and guideline for emerging research directions in modern magneto-optics, as well as illustrate the directions this research field might take in the foreseeable future. 
    more » « less
  7. Mueller matrix spectroscopic ellipsometry is applied to determine anisotropic optical properties for a set of single-crystal rhombohedral structure α-(Al x Ga 1− x ) 2 O 3 thin films (0 [Formula: see text] x [Formula: see text] 1). Samples are grown by plasma-assisted molecular beam epitaxy on m-plane sapphire. A critical-point model is used to render a spectroscopic model dielectric function tensor and to determine direct electronic band-to-band transition parameters, including the direction dependent two lowest-photon energy band-to-band transitions associated with the anisotropic bandgap. We obtain the composition dependence of the direction dependent two lowest band-to-band transitions with separate bandgap bowing parameters associated with the perpendicular ([Formula: see text] = 1.31 eV) and parallel ([Formula: see text] = 1.61 eV) electric field polarization to the lattice c direction. Our density functional theory calculations indicate a transition from indirect to direct characteristics between α-Ga 2 O 3 and α-Al 2 O 3 , respectively, and we identify a switch in band order where the lowest band-to-band transition occurs with polarization perpendicular to c in α-Ga 2 O 3 whereas for α-Al 2 O 3 the lowest transition occurs with polarization parallel to c. We estimate that the change in band order occurs at approximately 40% Al content. Additionally, the characteristic of the lowest energy critical point transition for polarization parallel to c changes from M 1 type in α-Ga 2 O 3 to M 0 type van Hove singularity in α-Al 2 O 3 . 
    more » « less
  8. We report on the free charge carrier properties of a two-dimensional electron gas (2DEG) in an AlN/Al x Ga 1– x N high electron mobility transistor structure with a high aluminum content ( x =  0.78). The 2DEG sheet density [Formula: see text] cm −2 , sheet mobility [Formula: see text] cm 2 /(Vs), sheet resistance [Formula: see text] [Formula: see text], and effective mass [Formula: see text] at low temperatures [Formula: see text] are determined by terahertz (THz) optical Hall effect measurements. The experimental 2DEG mobility in the channel is found within the expected range, and the sheet carrier density is in good agreement with self-consistent Poisson–Schrödinger calculations. However, a significant increase in the effective mass of 2DEG electrons at low temperatures is found in comparison with the respective value in bulk Al 0.78 Ga 22 N ([Formula: see text]). Possible mechanisms for the enhanced 2DEG effective mass parameter are discussed and quantified using self-consistent Poisson–Schrödinger calculations. 
    more » « less
  9. The hot-wall metalorganic chemical vapor deposition (MOCVD) concept, previously shown to enable superior material quality and high performance devices based on wide bandgap semiconductors, such as Ga(Al)N and SiC, has been applied to the epitaxial growth of β-Ga 2 O 3 . Epitaxial β-Ga 2 O 3 layers at high growth rates (above 1 μm/h), at low reagent flows, and at reduced growth temperatures (740 °C) are demonstrated. A high crystalline quality epitaxial material on a c-plane sapphire substrate is attained as corroborated by a combination of x-ray diffraction, high-resolution scanning transmission electron microscopy, and spectroscopic ellipsometry measurements. The hot-wall MOCVD process is transferred to homoepitaxy, and single-crystalline homoepitaxial β-Ga 2 O 3 layers are demonstrated with a [Formula: see text]01 rocking curve width of 118 arc sec, which is comparable to those of the edge-defined film-fed grown ([Formula: see text]01) β-Ga 2 O 3 substrates, indicative of similar dislocation densities for epilayers and substrates. Hence, hot-wall MOCVD is proposed as a prospective growth method to be further explored for the fabrication of β-Ga 2 O 3 . 
    more » « less