skip to main content


Title: Single- to Few-Layered, Graphene-Based Separation Membranes
Two-dimensional, graphene-based materials have attracted great attention as a new membrane building block, primarily owing to their potential to make the thinnest possible membranes and thus provide the highest permeance for effective sieving, assuming comparable porosity to conventional membranes and uniform molecular-sized pores. However, a great challenge exists to fabricate large-area, single-layered graphene or graphene oxide (GO) membranes that have negligible undesired transport pathways, such as grain boundaries, tears, and cracks. Therefore, model systems, such as a single flake or nanochannels between graphene or GO flakes, have been studied via both simulations and experiments to explore the transport mechanisms and separation potential of graphene-based membranes. This article critically reviews literature related to single- to few-layered graphene and GO membranes, from material synthesis and characteristics, fundamental membrane structures, and transport mechanisms to potential separation applications. Knowledge gaps between science and engineering in this new field and future opportunities for practical separation applications are also discussed.  more » « less
Award ID(s):
1451887
PAR ID:
10140640
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Annual Review of Chemical and Biomolecular Engineering
Volume:
9
Issue:
1
ISSN:
1947-5438
Page Range / eLocation ID:
17 to 39
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Layer-stacked graphene oxide (GO) membranes, in which unique two-dimensional (2D) water channels are formed between two neighboring GO nanosheets, have demonstrated great potential for aqueous phase separation. Subjects of crucial importance are to fundamentally understand the interlayer spacing ( i.e. channel height) of GO membranes in an aqueous environment, elucidate the mechanisms for water transport within such 2D channels, and precisely control the interlayer spacing to tune the membrane separation capability for targeted applications. In this investigation, we used an integrated quartz crystal mass balance (QCM-D) and ellipsometry to experimentally monitor the interlayer spacing of GO, reduced GO and crosslinked GO in aqueous solution and found that crosslinking can effectively prevent GO from swelling and precisely control the interlayer spacing. We then used molecular dynamics simulations to study the mass transport inside the 2D channels and proved that the chemical functional groups on the GO plane dramatically slow down water transport in the channels. Our findings on GO structure and water transport provide a necessary basis for further tailoring and optimizing the design and fabrication of GO membranes in various separation applications. 
    more » « less
  2. Abstract

    There is a need for developing reliable models for water and solute transport in graphene oxide (GO) membranes for advancing their emerging industrial water processing applications. In this direction, we develop predictive transport models for GO and reduced‐GO (rGO) membranes over a wide solute concentration range (0.01–0.5 M) and compositions, based on the extended Nernst–Planck transport equations, Donnan equilibrium condition, and solute adsorption models. Some model parameters are obtained by fitting experimental permeation data for water and unary (single‐component) aqueous solutions. The model is validated by predicting experimental permeation behavior in binary solutions, which display very different characteristics. Sensitivity analysis of salt rejections as a function of membrane design parameters (pore size and membrane charge density) allows us to infer design targets to achieve high salt rejections. Such models will be useful in accelerating structure‐separation property relationships of GO membranes and for separation process design and optimization.

     
    more » « less
  3. Graphene oxide/polymer composite water filtration membranes were developed via coalescence of graphene oxide (GO) stabilized Pickering emulsions around a porosity-generating polymer. Triptycene poly(ether ether sulfone)-CH2NH2:HCl polymer interacts with the GO at the water−oil interface, resulting in stable Pickering emulsions. When they are deposited and dried on polytetrafluoroethylene substrate, the emulsions fuse to form a continuous GO/polymer composite membrane. X-ray diffraction and scanning electron microscopy demonstrate that the intersheet spacing and thickness of the membranes increased with increasing polymer concentration, confirming the polymer as the spacer between the GO sheets. The water filtration capability of the composite membranes was tested by removing Rose Bengal from water, mimicking separations of weak black liquor waste. The composite membrane achieved 65% rejection and 2500 g m−2 h−1 bar−1. With high polymer and GO loading, composite membranes give superior rejection and permeance performance when compared with a GO membrane. This methodology for fabrication membranes via GO/polymer Pickering emulsions produces membranes with a homogeneous morphology and robust chemical separation strength. 
    more » « less
  4. Abstract

    Millions of people across the globe are severely afflicted because of water potability issues, and to proffer a solution to this crisis, efficient and cost-effective desalination techniques are necessitated. Membranes, in particular Graphene-derived membranes, have emerged as a potential answer to this grave problem because of their tunable ionic and molecular sieving capability, thin structure, and customizable microstructure. Among graphene-derived membranes, Graphene Oxide membranes have been the most promising, given the replete presence of oxygen-containing functional groups on its surface. However, the prospects of commercial applicability of these membranes are currently plagued by uneven stacking, crossflow delamination, flawed pores, screening and pH effects, and horizontal defects in the membrane. In addition, due to the selectivity–permeability trade-off that commonly exists in all membranes, the separation efficiency is negatively influenced. This review, while studying these challenges, aims to outline the most recent ground-breaking developments in graphene-based membrane technology, encompassing their separation mechanism, selectivity, adjustable mechanical characteristics, and uses. Additionally, we have covered in detail how several process variables such as temperature, total oxygen concentration, and functional groups affect the effectiveness of membrane separation with the focal point tilted toward studying the currently used intercalation techniques and effective nanomaterial graphene oxide membranes for water desalination

     
    more » « less
  5. Abstract

    Single‐layer graphene containing molecular‐sized in‐plane pores is regarded as a promising membrane material for high‐performance gas separations due to its atomic thickness and low gas transport resistance. However, typical etching‐based pore generation methods cannot decouple pore nucleation and pore growth, resulting in a trade‐off between high areal pore density and high selectivity. In contrast, intrinsic pores in graphene formed during chemical vapor deposition are not created by etching. Therefore, intrinsically porous graphene can exhibit high pore density while maintaining its gas selectivity. In this work, the density of intrinsic graphene pores is systematically controlled for the first time, while appropriate pore sizes for gas sieving are precisely maintained. As a result, single‐layer graphene membranes with the highest H2/CH4separation performances recorded to date (H2permeance > 4000 GPU and H2/CH4selectivity > 2000) are fabricated by manipulating growth temperature, precursor concentration, and non‐covalent decoration of the graphene surface. Moreover, it is identified that nanoscale molecular fouling of the graphene surface during gas separation where graphene pores are partially blocked by hydrocarbon contaminants under experimental conditions, controls both selectivity and temperature dependent permeance. Overall, the direct synthesis of porous single‐layer graphene exploits its tremendous potential as high‐performance gas‐sieving membranes.

     
    more » « less