skip to main content


Title: Single- to Few-Layered, Graphene-Based Separation Membranes
Two-dimensional, graphene-based materials have attracted great attention as a new membrane building block, primarily owing to their potential to make the thinnest possible membranes and thus provide the highest permeance for effective sieving, assuming comparable porosity to conventional membranes and uniform molecular-sized pores. However, a great challenge exists to fabricate large-area, single-layered graphene or graphene oxide (GO) membranes that have negligible undesired transport pathways, such as grain boundaries, tears, and cracks. Therefore, model systems, such as a single flake or nanochannels between graphene or GO flakes, have been studied via both simulations and experiments to explore the transport mechanisms and separation potential of graphene-based membranes. This article critically reviews literature related to single- to few-layered graphene and GO membranes, from material synthesis and characteristics, fundamental membrane structures, and transport mechanisms to potential separation applications. Knowledge gaps between science and engineering in this new field and future opportunities for practical separation applications are also discussed.  more » « less
Award ID(s):
1451887
NSF-PAR ID:
10140640
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Annual Review of Chemical and Biomolecular Engineering
Volume:
9
Issue:
1
ISSN:
1947-5438
Page Range / eLocation ID:
17 to 39
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Layer-stacked graphene oxide (GO) membranes, in which unique two-dimensional (2D) water channels are formed between two neighboring GO nanosheets, have demonstrated great potential for aqueous phase separation. Subjects of crucial importance are to fundamentally understand the interlayer spacing ( i.e. channel height) of GO membranes in an aqueous environment, elucidate the mechanisms for water transport within such 2D channels, and precisely control the interlayer spacing to tune the membrane separation capability for targeted applications. In this investigation, we used an integrated quartz crystal mass balance (QCM-D) and ellipsometry to experimentally monitor the interlayer spacing of GO, reduced GO and crosslinked GO in aqueous solution and found that crosslinking can effectively prevent GO from swelling and precisely control the interlayer spacing. We then used molecular dynamics simulations to study the mass transport inside the 2D channels and proved that the chemical functional groups on the GO plane dramatically slow down water transport in the channels. Our findings on GO structure and water transport provide a necessary basis for further tailoring and optimizing the design and fabrication of GO membranes in various separation applications. 
    more » « less
  2. Abstract

    There is a need for developing reliable models for water and solute transport in graphene oxide (GO) membranes for advancing their emerging industrial water processing applications. In this direction, we develop predictive transport models for GO and reduced‐GO (rGO) membranes over a wide solute concentration range (0.01–0.5 M) and compositions, based on the extended Nernst–Planck transport equations, Donnan equilibrium condition, and solute adsorption models. Some model parameters are obtained by fitting experimental permeation data for water and unary (single‐component) aqueous solutions. The model is validated by predicting experimental permeation behavior in binary solutions, which display very different characteristics. Sensitivity analysis of salt rejections as a function of membrane design parameters (pore size and membrane charge density) allows us to infer design targets to achieve high salt rejections. Such models will be useful in accelerating structure‐separation property relationships of GO membranes and for separation process design and optimization.

     
    more » « less
  3. Abstract

    Single‐layer graphene containing molecular‐sized in‐plane pores is regarded as a promising membrane material for high‐performance gas separations due to its atomic thickness and low gas transport resistance. However, typical etching‐based pore generation methods cannot decouple pore nucleation and pore growth, resulting in a trade‐off between high areal pore density and high selectivity. In contrast, intrinsic pores in graphene formed during chemical vapor deposition are not created by etching. Therefore, intrinsically porous graphene can exhibit high pore density while maintaining its gas selectivity. In this work, the density of intrinsic graphene pores is systematically controlled for the first time, while appropriate pore sizes for gas sieving are precisely maintained. As a result, single‐layer graphene membranes with the highest H2/CH4separation performances recorded to date (H2permeance > 4000 GPU and H2/CH4selectivity > 2000) are fabricated by manipulating growth temperature, precursor concentration, and non‐covalent decoration of the graphene surface. Moreover, it is identified that nanoscale molecular fouling of the graphene surface during gas separation where graphene pores are partially blocked by hydrocarbon contaminants under experimental conditions, controls both selectivity and temperature dependent permeance. Overall, the direct synthesis of porous single‐layer graphene exploits its tremendous potential as high‐performance gas‐sieving membranes.

     
    more » « less
  4. Traditional protective garments loaded with activated carbons to remove toxic gases are very bulky. Novel graphene oxide (GO) flake-based composite lamellar membrane structure is being developed as a potential component of a garment for protection against chemical warfare agents (CWAs) represented here by simulants, dimethyl methyl phosphonate (DMMP) (a sarin-simulant), and 2-chloroethyl ethyl sulfide (CEES) (a simulant for sulfur mustard), yet allowing a high-moisture transmission rate. GO flakes of dimensions 300−800 nm, 0.7−1.2 nm thickness and dispersed in an aqueous suspension were formed into a membrane by vacuum filtration on a porous poly(ether sulfone) (PES) or poly(ether ether ketone) (PEEK) support membrane for noncovalent π−π interactions with GO flakes. After physical compression of such a membrane, upright cup tests indicated that it can block toluene for 3−4 days and DMMP for 5 days while exhibiting excellent water vapor permeation. Further, they display very low permeances for small-molecule gases/vapors. The GO flakes underwent crosslinking later with ethylenediamine (EDA) introduced during the vacuum filtration followed by physical compression and heating. With a further spray coating of polyurethane (PU), these membranes could be bent without losing barrier properties vis-à-vis the CWA simulant DMMP for 5 days; a membrane not subjected to bending blocked DMMP for 15 days. For the PEEK-EDA-GO-PU compressed membranes after bending, the separation factors of H2O over other species for low gas flow rates in the dynamic moisture permeation cell (DMPC) are: αH2O−He is 42.3; αH2O−N2 is 110; and αH2O−ethane is 1800. At higher gas flow rates in the DMPC, the moisture transmission rate goes up considerably due to reduced boundary layer resistances and exceeds the threshold water vapor flux of 2000 g/(m2·day) that defines a breathable fabric. This membrane displayed considerable resistance to permeation by CEES as well. The PES-EDA-GO-PU-compressed membrane shows good mechanical property under tensile strength tests. 
    more » « less
  5. Graphene oxide (GO) films have great potential for aerospace, electronics, and renewable energy applications. GO sheets are low-cost and water-soluble and retain some of Graphene’s exceptional properties once reduced. GO or reduced GO (rGO) sheets within a film interact with each other via secondary bonds and cross-linkers. These interfacial interactions include non-covalent bonds such as hydrogen bonding, ionic bonding, and π-π stacking. Stress transfer and failure mechanisms in GO and rGO films, specifically how linkers affect them, are not well understood. The present study investigates the influence of inter-particle interactions and film structures, focusing on hydrogen bonds introduced via cellulose nanocrystals (CNC), on failure and stress-transfer of the GO and rGO films. To this end, GO films with CNC crosslinkers were made, followed by a chemical reduction. The few-micron thick films were characterized using tensile testing. All tested films exhibited a brittle failure and achieved tensile strengths and modulus in the ~40-85 MPa and ~3.5-9 GPa ranges, respectively. To reveal stress transfer mechanisms in each sample, tensile in-situ Raman spectroscopy testing was carried out. By monitoring the changes in bandwidth and position of Raman bands while stretching the film, useful information such as sheet slippage and cross-linker interactions were gathered. The addition of CNC enhanced modulus but degraded strength for both GO and rGO films. Interestingly, the Raman G-peak shift at failure, indicative of stress transfer to individual GO/rGO particles, is commensurate with the films’ strengths. Correlating these results with the structure and composition of different films reveals new understanding of stress transfer between GO/rGO particles, paving the way for the scalable manufacturing of strong and stiff GO-based films. 
    more » « less