skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Direct Chemical Vapor Deposition Synthesis of Porous Single‐Layer Graphene Membranes with High Gas Permeances and Selectivities
Abstract

Single‐layer graphene containing molecular‐sized in‐plane pores is regarded as a promising membrane material for high‐performance gas separations due to its atomic thickness and low gas transport resistance. However, typical etching‐based pore generation methods cannot decouple pore nucleation and pore growth, resulting in a trade‐off between high areal pore density and high selectivity. In contrast, intrinsic pores in graphene formed during chemical vapor deposition are not created by etching. Therefore, intrinsically porous graphene can exhibit high pore density while maintaining its gas selectivity. In this work, the density of intrinsic graphene pores is systematically controlled for the first time, while appropriate pore sizes for gas sieving are precisely maintained. As a result, single‐layer graphene membranes with the highest H2/CH4separation performances recorded to date (H2permeance > 4000 GPU and H2/CH4selectivity > 2000) are fabricated by manipulating growth temperature, precursor concentration, and non‐covalent decoration of the graphene surface. Moreover, it is identified that nanoscale molecular fouling of the graphene surface during gas separation where graphene pores are partially blocked by hydrocarbon contaminants under experimental conditions, controls both selectivity and temperature dependent permeance. Overall, the direct synthesis of porous single‐layer graphene exploits its tremendous potential as high‐performance gas‐sieving membranes.

 
more » « less
Award ID(s):
1907716
PAR ID:
10446378
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
33
Issue:
44
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The high energy footprint of commodity gas purification and increasing demand for gases require new approaches to gas separation. Kinetic separation of gas mixtures through molecular sieving can enable separation by molecular size or shape exclusion. Physisorbents must exhibit the right pore diameter to enable separation, but the 0.3–0.4 nm range relevant to small gas molecules is hard to control. Herein, dehydration of the ultramicroporous metal–organic framework Ca‐trimesate, Ca(HBTC)⋅H2O (H3BTC=trimesic acid), bnn‐1‐Ca‐H2O, affords a narrow pore variant, Ca(HBTC), bnn‐1‐Ca. Whereas bnn‐1‐Ca‐H2O (pore diameter 0.34 nm) exhibits ultra‐high CO2/N2, CO2/CH4, and C2H2/C2H4binary selectivity, bnn‐1‐Ca (pore diameter 0.31 nm) offers ideal selectivity for H2/CO2and H2/N2under cryogenic conditions. Ca‐trimesate, the first physisorbent to exhibit H2sieving under cryogenic conditions, could be a prototype for a general approach to exert precise control over pore diameter in physisorbents.

     
    more » « less
  2. Abstract

    The high energy footprint of commodity gas purification and increasing demand for gases require new approaches to gas separation. Kinetic separation of gas mixtures through molecular sieving can enable separation by molecular size or shape exclusion. Physisorbents must exhibit the right pore diameter to enable separation, but the 0.3–0.4 nm range relevant to small gas molecules is hard to control. Herein, dehydration of the ultramicroporous metal–organic framework Ca‐trimesate, Ca(HBTC)⋅H2O (H3BTC=trimesic acid), bnn‐1‐Ca‐H2O, affords a narrow pore variant, Ca(HBTC), bnn‐1‐Ca. Whereas bnn‐1‐Ca‐H2O (pore diameter 0.34 nm) exhibits ultra‐high CO2/N2, CO2/CH4, and C2H2/C2H4binary selectivity, bnn‐1‐Ca (pore diameter 0.31 nm) offers ideal selectivity for H2/CO2and H2/N2under cryogenic conditions. Ca‐trimesate, the first physisorbent to exhibit H2sieving under cryogenic conditions, could be a prototype for a general approach to exert precise control over pore diameter in physisorbents.

     
    more » « less
  3. Abstract

    Graphene oxide (GO) nanosheets stacked in parallel with subnanometer channels can exhibit an excellent size‐sieving ability for membrane‐based gas separation. However, gas molecules have to diffuse through the tortuous nanochannels, leading to low permeability. Herein we demonstrate two versatile approaches to modify the GO (before membrane fabrication by vacuum‐filtration) to collectively increase gas permeability, etching using hydrogen peroxide to generate in‐plane nanopores and acidifying using hydrochloric acid. For example, a membrane prepared at a pH of 5.0 using the 4‐h‐etched GO (HGO‐4h) shows He permeability of 5.3 Barrer and He/CH4selectivity of 800, which are 5 times and 1.5 times those of the GO membranes, respectively. Decreasing the pH from 5.0 to 2.0 for HGO‐4h enhances He permeability to 57 Barrer and He/CH4selectivity to 1,800. The HGO‐4h prepared at the pH of 2.0 exhibits separation properties of H2/CO2, H2/N2, He/N2, and He/CH4surpassing their corresponding upper bounds.

     
    more » « less
  4. Abstract

    Porous graphene and other atomically thin 2D materials are regarded as highly promising membrane materials for high‐performance gas separations due to their atomic thickness, large‐scale synthesizability, excellent mechanical strength, and chemical stability. When these atomically thin materials contain a high areal density of gas‐sieving nanoscale pores, they can exhibit both high gas permeances and high selectivities, which is beneficial for reducing the cost of gas‐separation processes. Here, recent modeling and experimental advances in nanoporous atomically thin membranes for gas separations is discussed. The major challenges involved, including controlling pore size distributions, scaling up the membrane area, and matching theory with experimental results, are also highlighted. Finally, important future directions are proposed for real gas‐separation applications of nanoporous atomically thin membranes.

     
    more » « less
  5. Abstract

    Atomically thin membranes comprising nanopores in a 2D material promise to surpass the performance of polymeric membranes in several critical applications, including water purification, chemical and gas separations, and energy harvesting. However, fabrication of membranes with precise pore size distributions that provide exceptionally high selectivity and permeance in a scalable framework remains an outstanding challenge. Circumventing these constraints, here, a platform technology is developed that harnesses the ability of oppositely charged polyelectrolytes to self‐assemble preferentially across larger, relatively leaky atomically thin nanopores by exploiting the lower steric hindrance of such larger pores to molecular interactions across the pores. By selectively tightening the pore size distribution in this manner, self‐assembly of oppositely charged polyelectrolytes simultaneously introduced on opposite sides of nanoporous graphene membranes is demonstrated to discriminate between nanopores to seal non‐selective transport channels, while minimally compromising smaller, water‐selective pores, thereby remarkably attenuating solute leakage. This improved membrane selectivity enables desalination across centimeter‐scale nanoporous graphene with 99.7% and >90% rejection of MgSO4and NaCl, respectively, under forward osmosis. These findings provide a versatile strategy to augment the performance of nanoporous atomically thin membranes and present intriguing possibilities of controlling reactions across 2D materials via exclusive exploitation of pore size‐dependent intermolecular interactions.

     
    more » « less