skip to main content


Title: Antifouling UV-treated GO/PES hollow fiber membranes in a membrane bioreactor (MBR)
Single layer graphene oxide (SLGO) was studied as a novel coating material to drastically improve the antifouling performance of polyether sulfone (PES) hollow fiber (HF) membranes in membrane bioreactor (MBR) application. By selectively modifying the membrane surface, only a small amount of SLGO coating (6.2 mg m −2 ) was needed to achieve acceptable membrane performance. The UV treatment of the SLGO coating further assisted in improving the antifouling properties of the as-prepared PES HF membranes. By comparing the transmembrane pressure of pristine PES HF and PES_GO 6.20_ UV X (X = 0–1.5 h) membranes in a MBR for wastewater treatment at a fixed water flux, the PES_GO 6.20_ UV 1.0 membrane coated with 1 h UV-treated SLGO was demonstrated to substantially relieve the bio-fouling problem. To understand the influence of SLGO modification on membrane performance, FESEM, ATR-FTIR, and AFM analyses were conducted to characterize the as-prepared membranes, and the SLGO deposition mechanism was also proposed in this study.  more » « less
Award ID(s):
1451887
NSF-PAR ID:
10140642
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Science: Water Research & Technology
Volume:
5
Issue:
7
ISSN:
2053-1400
Page Range / eLocation ID:
1244 to 1252
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Superhydrophilic zwitterions on the membrane surface have been widely exploited to improve antifouling properties. However, the problematic formation of a <20 nm zwitterionic layer on the hydrophilic surface remains a challenge in wastewater treatment. In this work, we focused on the energy consumption and time control of polymerization and improved the strong hydrophilicity of the modified polyvinylidene difluoride (PVDF) membrane. The sulfobetaine methacrylate (SBMA) monomer was treated with UV-light through polymerization on the PVDF membrane at a variable time interval of 30 to 300 s to grow a poly-SBMA (PSBMA) chain and improve the membrane hydrophilicity. We examined the physiochemical properties of as-prepared PVDF and PVDF–PSBMAx using numeric analytical tools. Then, the zwitterionic polymer with controlled performance was grafted onto the SBMA through UV-light treatment to improve its antifouling properties. The PVDF–PSBMA120s modified membrane exhibited a greater flux rate and indicated bovine serum albumin (BSA) rejection performance. PVDF–PSBMA120s and unmodified PVDF membranes were examined for their antifouling performance using up to three cycles dynamic test using BSA as foulant. The PVDF-modified PSBMA polymer improved the antifouling properties in this experiment. Overall, the resulting membrane demonstrated an enhancement in the hydrophilicity and permeability of the membrane and simultaneously augmented its antifouling properties. 
    more » « less
  2. In this study, hydrophilic silica nanoparticles (Si NPs) were used to modify α-alumina tubular membranes to improve their performance in terms of flux, oil rejection, and anti-fouling properties. Our work focuses on enhancing membrane performance, particularly for difficult applications such as produced water treatment. The prepared membranes were applied for oil-in-water emulsion treatment. After coating hydrophilic Si NPs, the oil contact angle improved from 133.8° to 171.4°. To prevent Si NPs from leaching off the surface of α-alumina tubular membranes, polyvinyl alcohol was used to coat the membranes as a pre-treatment step before Si NP modification. After coating the membrane with Si NPs, the roughness of the membrane surface decreased, likely leading to less fouling. After coating Si NPs, Total Organic Carbon rejection increased from 93.1% for pristine α-alumina tubular membranes to 97.7% for silica-modified membranes because of hydrophilic improvements of the modified membranes. The Si NP coating improved the anti-fouling property of membranes with the flux recovery ratio increasing from 71.3% for pristine α-alumina tubular membranes to 85.9% for silica-modified membranes. Scanning Electron Microscopy, Energy- dispersive X-ray spectroscopy, oil contact angle, and Atomic Force Microscopy characterization tests were done. The tests showed successful Si NPs impregnation and altered wettability. 
    more » « less
  3.  
    more » « less
  4. null (Ed.)
    In the textile industry, a high-efficiency dye removal and low-retention of salt is demanded for recycling wastewater. In this study, polyvinylidene fluoride (PVDF) ultrafiltration membrane was transformed to a negatively charged loose nanofiltration (NF) membrane through UV-grafting of acrylic acid. At the optimal exposure of PVDF membrane in UV light for 5 min, the membrane had a high dye recovery above 99% (Congo red and Eriochrome® Black T) and a low sodium chloride (NaCl) rejection of less than 15% along with pure water flux of 26 L∙m−2∙h−1∙bar−1. Its antifouling and oleophobicity surface properties were verified using fluorescent- bovine serum albumin (BSA) and underwater mineral oil contact angle, respectively. According to the fluorescent microscopic images, the modified membrane had ten times lower adhesion of protein on the surface than the unmodified membrane. The underwater oil contact angle was raised from 110° to 155°. Moreover, the salt rejection followed this sequence: Na2SO4 > MgSO4 > NaCl > MgCl2, which agreed with the typical negatively charged NF membrane. In addition, the physicochemical characterization of membranes was further investigated to understand and link to the membrane performance, such as surface functional group, surface elements analysis, surface roughness/morphology, and surface hydrophilicity. 
    more » « less
  5. null (Ed.)
    Conventional approaches to mitigate fouling of membrane surfaces impart hydrophilicity to the membrane surface, which increases the water of hydration and fluidity near the surface. By contrast, we demonstrate here that tuning the membrane surface energy close to that of the dispersive component of water surface tension (21.8 mN m −1 ) can also improve the antifouling properties of the membrane. Specifically, ultrafiltration (UF) membranes were first modified using polydopamine (PDA) followed by grafting of amine-terminated polysiloxane (PSi-NH 2 ). For example, with 2 g L −1 PSi-NH 2 coating solution, the obtained coating layer contains 53% by mass fraction PSi-NH 2 and exhibits a total surface energy of 21 mN m −1 , decreasing the adsorption of bovine serum albumin by 44% compared to the unmodified membrane. When challenged with 1 g L −1 sodium alginate in a constant-flux crossflow system, the PSi-NH 2 -grafted membrane exhibits a 70% lower fouling rate than the pristine membrane at a water flux of 110 L (m 2 h) −1 and good stability when cleaned with NaOH solutions. 
    more » « less