Highway slopes are susceptible to various geohazards, including landslides, rockfalls, and soil creep, necessitating early detection to minimize disruptions, prevent collisions, and ensure road safety. Conventional methods, such as visual inspections and periodic surveys, may overlook subtle changes or fail to provide timely alerts. This research aims to enhance slope movement and instability detection by leveraging advanced remote-sensing technologies such as interferometric synthetic aperture radar (InSAR), light detection and ranging (LiDAR), and uncrewed aerial vehicles (UAV). The primary objective is to develop an integrated approach combining multiple data sources to detect and predict highway slope movement effectively. InSAR offers surface deformation measurements over time, capturing nuanced slope movements, while LiDAR and UAVs provide high-resolution elevation information, including slope angles, curvature, and vegetation cover. This study explores methods to integrate these complementary data sets to validate the slope movement detection from InSAR. The research involves establishing a baseline ground motion scenario using historical open-access Sentinel-1 satellite data spanning 10 years (20182024) for the central Mississippi region, characterized by expansive clay prone to volume changes, then comparing the ground motions with those observed from near-surface remote sensing. The baseline ground motion scenario is compared with ground truthing from near-surface remote sensing surveys conducted by LiDAR and UAV photogrammetry. The point cloud and imagery obtained from LiDAR and UAVs facilitated cross-verification and validation of the InSAR ground displacements. This study provides a comprehensive and innovative methodology for monitoring highway infrastructure using InSAR and near-surface remote sensing techniques such as LiDAR and UAV. Continuous ground motion analysis provides immediate feedback on slope performance, helping to prevent potential failures. LiDAR change detection allows for detailed evaluation of highway slopes and precise identification of potential failure locations. Integrating remote sensing techniques into geotechnical asset management programs is crucial for proactively assessing risks and enhancing highway safety and resilience. Future studies will use this data set to create finite-element-based numerical models, aiding in developing surrogate models for highway embankments based on observed InSAR ground motion patterns. This study will also serve as a foundation for future machine-learning classification models for detecting vulnerable geo-infrastructure assets.
more »
« less
Lidar remote sensing of the aquatic environment: invited
This paper is a review of lidar remote sensing of the aquatic environment. The optical properties of seawater relevant to lidar remote sensing are described. The three main theoretical approaches to understanding the performance of lidar are considered (the time-dependent radiative transfer equation, Monte Carlo simulations, and the quasi-single-scattering assumption). Basic lidar instrument design considerations are presented, and examples of lidar studies from surface vessels, aircraft, and satellites are given.
more »
« less
- Award ID(s):
- 1757351
- PAR ID:
- 10140686
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Applied Optics
- Volume:
- 59
- Issue:
- 10
- ISSN:
- 1559-128X; APOPAI
- Format(s):
- Medium: X Size: Article No. C92
- Size(s):
- Article No. C92
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Tropical forests are increasingly threatened by deforestation and degradation, impacting carbon storage, climate regulations and biodiversity. Restoring these ecosystems is crucial for environmental sustainability, yet monitoring these efforts poses significant challenges. Secondary forests are in a constant state of flux, with growth depending on multiple factors.Remote sensing technologies offer cost‐effective, scalable and transferable solutions, advancing forest restoration monitoring towards more accurate, efficient and real‐time data analysis and interpretation. This review provides a comprehensive evaluation of the current state and advancements in remote sensing technologies applied to monitoring tropical forest restoration.Synthesis and applications: This review brings together the state of the art of remote sensing technologies, such as very‐high‐resolution RGB imagery, multi‐ and hyperspectral imaging, lidar, radar and thermal‐infrared technologies and their applicability in monitoring forest restoration. In conclusion, this review emphasizes the potential of remote sensing technologies, coupled with advanced computational techniques, to enhance global efforts towards effective and sustainable forest restoration monitoring.more » « less
-
Abstract Sensitivities of the backscattering properties to the microphysical properties (in particular, size and shape) of mineral dust aerosols are examined based on TAMUdust2020, a comprehensive single‐scattering property database of irregular aerosol particles. We develop the bulk mineral dust particle models based on size‐resolved particle ensembles with randomly distorted shapes and spectrally resolved complex refractive indices, which are constrained by using in situ observations reported in the literature. The light detection and ranging (lidar) ratio is more sensitive to particle shape than particle size, while the depolarization ratio depends strongly on particle size. The simulated bulk backscattering properties (i.e., the lidar ratio and the depolarization ratio) of typical mineral dust particles with effective radii of 0.5–3 µm are reasonably consistent with lidar observations made during several field campaigns. The present dust bulk optical property models are applicable to lidar‐based remote sensing of dust aerosol properties.more » « less
-
The hemlock woolly adelgid (HWA; Adelges tsugae) is an invasive insect infestation that is spreading into the forests of the northeastern United States, driven by the warmer winter temperatures associated with climate change. The initial stages of this disturbance are difficult to detect with passive optical remote sensing, since the insect often causes its host species, eastern hemlock trees (Tsuga canadensis), to defoliate in the midstory and understory before showing impacts in the overstory. New active remote sensing technologies—such as the recently launched NASA Global Ecosystem Dynamics Investigation (GEDI) spaceborne lidar—can address this limitation by penetrating canopy gaps and recording lower canopy structural changes. This study explores new opportunities for monitoring the HWA infestation with airborne lidar scanning (ALS) and GEDI spaceborne lidar data. GEDI waveforms were simulated using airborne lidar datasets from an HWA-infested forest plot at the Harvard Forest ForestGEO site in central Massachusetts. Two airborne lidar instruments, the NASA G-LiHT and the NEON AOP, overflew the site in 2012 and 2016. GEDI waveforms were simulated from each airborne lidar dataset, and the change in waveform metrics from 2012 to 2016 was compared to field-derived hemlock mortality at the ForestGEO site. Hemlock plots were shown to be undergoing dynamic changes as a result of the HWA infestation, losing substantial plant area in the middle canopy, while still growing in the upper canopy. Changes in midstory plant area (PAI 11–12 m above ground) and overall canopy permeability (indicated by RH10) accounted for 60% of the variation in hemlock mortality in a logistic regression model. The robustness of these structure-condition relationships held even when simulated waveforms were treated as real GEDI data with added noise and sparse spatial coverage. These results show promise for future disturbance monitoring studies with ALS and GEDI lidar data.more » « less
-
As reported in 1954, more than a half century ago, C. Cox and W. Munk developed an empirical model of the slope distribution of ocean surface waves that has been widely used ever since to model the optical properties of the sea surface and is of particular importance to the satellite remote sensing community. In that work, the reflectance of sunlight was photographed from a Boeing B-17G bomber and was then analyzed. In this paper, surface slope statistics are investigated from airborne scanning topographic lidar data collected during a series of field experiments off the coast of California and in the Gulf of Mexico, over a broad range of environmental conditions, with wind speeds ranging from approximately 2 to 13 m s −1 . Unlike the reflectance-based approach of Cox and Munk, the slope distribution is computed by counting laser glints produced by specular reflections as the lidar is scanned over the surface of the ocean. We find good agreement with their measurements for the mean-square slope and with more recent (2006) results from Bréon and Henriot that were based on satellite remote sensing. Significant discrepancies for the higher-order statistics are found and discussed. We also demonstrate here that airborne scanning lidar technology offers a viable means of remotely estimating surface wind speed and momentum flux.more » « less