Abstract Sensitivities of the backscattering properties to the microphysical properties (in particular, size and shape) of mineral dust aerosols are examined based on TAMUdust2020, a comprehensive single‐scattering property database of irregular aerosol particles. We develop the bulk mineral dust particle models based on size‐resolved particle ensembles with randomly distorted shapes and spectrally resolved complex refractive indices, which are constrained by using in situ observations reported in the literature. The light detection and ranging (lidar) ratio is more sensitive to particle shape than particle size, while the depolarization ratio depends strongly on particle size. The simulated bulk backscattering properties (i.e., the lidar ratio and the depolarization ratio) of typical mineral dust particles with effective radii of 0.5–3 µm are reasonably consistent with lidar observations made during several field campaigns. The present dust bulk optical property models are applicable to lidar‐based remote sensing of dust aerosol properties.
more »
« less
Lidar remote sensing of the aquatic environment: invited
This paper is a review of lidar remote sensing of the aquatic environment. The optical properties of seawater relevant to lidar remote sensing are described. The three main theoretical approaches to understanding the performance of lidar are considered (the time-dependent radiative transfer equation, Monte Carlo simulations, and the quasi-single-scattering assumption). Basic lidar instrument design considerations are presented, and examples of lidar studies from surface vessels, aircraft, and satellites are given.
more »
« less
- Award ID(s):
- 1757351
- PAR ID:
- 10140686
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Applied Optics
- Volume:
- 59
- Issue:
- 10
- ISSN:
- 1559-128X; APOPAI
- Format(s):
- Medium: X Size: Article No. C92
- Size(s):
- Article No. C92
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The hemlock woolly adelgid (HWA; Adelges tsugae) is an invasive insect infestation that is spreading into the forests of the northeastern United States, driven by the warmer winter temperatures associated with climate change. The initial stages of this disturbance are difficult to detect with passive optical remote sensing, since the insect often causes its host species, eastern hemlock trees (Tsuga canadensis), to defoliate in the midstory and understory before showing impacts in the overstory. New active remote sensing technologies—such as the recently launched NASA Global Ecosystem Dynamics Investigation (GEDI) spaceborne lidar—can address this limitation by penetrating canopy gaps and recording lower canopy structural changes. This study explores new opportunities for monitoring the HWA infestation with airborne lidar scanning (ALS) and GEDI spaceborne lidar data. GEDI waveforms were simulated using airborne lidar datasets from an HWA-infested forest plot at the Harvard Forest ForestGEO site in central Massachusetts. Two airborne lidar instruments, the NASA G-LiHT and the NEON AOP, overflew the site in 2012 and 2016. GEDI waveforms were simulated from each airborne lidar dataset, and the change in waveform metrics from 2012 to 2016 was compared to field-derived hemlock mortality at the ForestGEO site. Hemlock plots were shown to be undergoing dynamic changes as a result of the HWA infestation, losing substantial plant area in the middle canopy, while still growing in the upper canopy. Changes in midstory plant area (PAI 11–12 m above ground) and overall canopy permeability (indicated by RH10) accounted for 60% of the variation in hemlock mortality in a logistic regression model. The robustness of these structure-condition relationships held even when simulated waveforms were treated as real GEDI data with added noise and sparse spatial coverage. These results show promise for future disturbance monitoring studies with ALS and GEDI lidar data.more » « less
-
As reported in 1954, more than a half century ago, C. Cox and W. Munk developed an empirical model of the slope distribution of ocean surface waves that has been widely used ever since to model the optical properties of the sea surface and is of particular importance to the satellite remote sensing community. In that work, the reflectance of sunlight was photographed from a Boeing B-17G bomber and was then analyzed. In this paper, surface slope statistics are investigated from airborne scanning topographic lidar data collected during a series of field experiments off the coast of California and in the Gulf of Mexico, over a broad range of environmental conditions, with wind speeds ranging from approximately 2 to 13 m s −1 . Unlike the reflectance-based approach of Cox and Munk, the slope distribution is computed by counting laser glints produced by specular reflections as the lidar is scanned over the surface of the ocean. We find good agreement with their measurements for the mean-square slope and with more recent (2006) results from Bréon and Henriot that were based on satellite remote sensing. Significant discrepancies for the higher-order statistics are found and discussed. We also demonstrate here that airborne scanning lidar technology offers a viable means of remotely estimating surface wind speed and momentum flux.more » « less
-
The National Ecological Observatory Network (NEON) Airborne Observation Platform (AOP) provides long-term, quantitative information on land use, vegetation structure and canopy chemistry over the NEON sites. AOP flies a suite of integrated remote sensing instruments consisting of a hyperspectral imager, a waveform lidar, and a color digital camera. Small-footprint full-waveform airborne lidar provides an enhanced capability beyond discrete return lidar for capturing and characterizing canopy structure. Due to high data rates/volumes, a common practice is to truncate waveforms. Very little research exists to determine how much data should be saved. In this study, simulations are run in Rochester Institute of Technology’s DIRSIG software. The resulting output waveforms are analyzed to assess three lidar system requirements: the total number of bins with a detected signal, the number of segments, and the max number of bins in a single segment. Recommendations for the values of these requirements are provided.more » « less
-
Frontier forests in the Brazilian Amazon have been heavily altered by nearly a half-century of deforestation for agriculture and degradation from fire and logging. The long-term effects of forest degradation on habitat structure and habitat use remain poorly understood, largely due to the limitations of traditional field methods for characterizing heterogeneity at relevant spatial and temporal scales. This work demonstrates the opportunity to assess degradation impacts on ecosystem structure and biodiversity at landscape scales (200 km2) by combining airborne lidar and acoustic remote sensing across two municipalities in Mato Grosso, Feliz Natal and Nova Ubiratã. Among degradation classes, our results indicate that repeated fire events have the most destructive legacy for both habitat structure and habitat use. Lidar analyses reveal that repeated fire events can result in a total loss of original canopy trees. Similarly, our acoustic analyses suggest that repeated fires may fundamentally transform animal community composition. The combination of remote sensing approaches bridges the scale gap between ground-based and satellite observations to support a regional-scale investigation into the complex consequences of Amazon forest degradation.more » « less