skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dendritic architectures by orthogonal thiol-maleimide “click” and furan-maleimide dynamic covalent chemistries
A set of dendrons and dendrimers is synthesized divergently using an orthogonal combination of kinetically-driven thiol-maleimide “click” chemistry and thermodynamically reversible furan-maleimide cycloaddition/retrocycloaddition reactions. Growth is controlled by taking advantage of the selective thiol–ene addition of thiols to the electron withdrawn alkene of maleimide in the presence of electron rich alkene of oxanorbornene. Subsequent activation of growing dendrons/dendrimers requires only heat to induce the dynamic covalent liberation of peripheral furan protecting groups. The methodology introduced provides a new route to multifunctional dendrimers that could, in principle, be synthesized by introducing different branched monomers at any stage of dendrimer growth, allowing dendrimer architectures and properties to be better tailored to their intended applications.  more » « less
Award ID(s):
1352239
PAR ID:
10140866
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Organic & Biomolecular Chemistry
Volume:
17
Issue:
34
ISSN:
1477-0520
Page Range / eLocation ID:
7878 to 7883
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Singlet fission and triplet-triplet annihilation upconversion are two multiexciton processes intimately related to the dynamic interaction between one high-lying energy singlet and two low-lying energy triplet excitons. Here, we introduce a series of dendritic macromolecules that serve as platform to study the effect of interchromophore interactions on the dynamics of multiexciton generation and decay as a function of dendrimer generation. The dendrimers (generations 1–4) consist of trimethylolpropane core and 2,2-bis(methylol)propionic acid (bis-MPA) dendrons that provide exponential growth of the branches, leading to a corona decorated with pentacenes for SF or anthracenes for TTA-UC. The findings reveal a trend where a few highly ordered sites emerge as the dendrimer generation grows, dominating the multiexciton dynamics, as deduced from optical spectra, and transient absorption spectroscopy. While the dendritic structures enhance TTA-UC at low annihilator concentrations in the largest dendrimers, the paired chromophore interactions induce a broadened and red-shifted excimer emission. In SF dendrimers of higher generations, the triplet dynamics become increasingly dominated by pairwise sites exhibiting strong coupling (Type II), which can be readily distinguished from sites with weaker coupling (Type I) by their spectral dynamics and decay kinetics. 
    more » « less
  2. All activities of our daily life, of the nature surrounding us and of the entire society and its complex economic and political systems are affected by stimuli. Therefore, understanding stimuli-responsive principles in nature, biology, society, and in complex synthetic systems is fundamental to natural and life sciences. This invited Perspective attempts to organize, to the best of our knowledge, for the first time the stimuli-responsive principles of supramolecular organizations emerging from self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers. Definitions of stimulus and stimuli from different fields of science are first discussed. Subsequently, we decided that supramolecular organizations of self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers may fit best in the definition of stimuli from biology. After a brief historical introduction to the discovery and development of conventional and self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers, a classification of stimuli-responsible principles as internal- and external-stimuli was made. Due to the enormous amount of literature on conventional dendrons, dendrimers, and dendronized polymers as well as on their self-assembling and self-organizable systems we decided to discuss stimuli-responsive principles only with examples from our laboratory. We apologize to all contributors to dendrimers and to the readers of this Perspective for this space-limited decision. Even after this decision, restrictions to a limited number of examples were required. In spite of this, we expect that this Perspective will provide a new way of thinking about stimuli in all fields of self-organized complex soft matter. 
    more » « less
  3. Poly(ionic liquid) covalently adaptable networks containing thermoreversible furan–maleimide linkages were prepared and characterized for their thermal, mechanical and conductive properties. Self-healing behaviour was initially evaluated using oscillatory rheology where a G ′/ G ′′ crossover temperature of ∼110 °C was observed. Anhydrous conductivities, as determined by dielectric relaxation spectroscopy, were found to be on the order of 10 −8 S cm −1 at 30 °C. Recovery of >70% of the original stress and strain at break was found within 2 hours at 105 °C as determined from tensile testing experiments, with breakage occurring at a new point on the film. Recovery of conductivity was completed utilizing chronoamperometric cycling whereby >75% of the original current was recovered within two hours at 110 °C. 
    more » « less
  4. null (Ed.)
    Poly(ionic liquid) covalently adaptable networks containing thermoreversible furan–maleimide linkages were prepared and characterized for their thermal, mechanical and conductive properties. Self-healing behaviour was initially evaluated using oscillatory rheology where a G′/G′′ crossover temperature of ∼110 °C was observed. Anhydrous conductivities, as determined by dielectric relaxation spectroscopy, were found to be on the order of 10−8 S cm−1 at 30 °C. Recovery of >70% of the original stress and strain at break was found within 2 hours at 105 °C as determined from tensile testing experiments, with breakage occurring at a new point on the film. Recovery of conductivity was completed utilizing chronoamperometric cycling whereby >75% of the original current was recovered within two hours at 110 °C. 
    more » « less
  5. Dynamic photopolymer networks that take advantage of the thermodynamically controlled reversibility of thiol–succinic anhydride adducts were synthesized from commercial substrates and investigated as a new class of covalent adaptable networks (CANs). Through systematic studies of the catalyst and stoichiometry effects on the exchange dynamics two distinctive exchange mechanisms were found, and then demonstrated to contribute to the overall dynamic characteristics. By varying the catalyst activity, i.e. basicity and/or nucleophilicity, control over the dynamic responsiveness through changes in the type of dynamic covalent chemistry mode (reversible addition vs. reversible exchange) was achieved in otherwise compositionally analogous materials. More specifically, the participation of the associative mechanism (thiol–thioester exchange) in the otherwise dissociative networks, and its relevance on materials properties was demonstrated by dielectric analysis (DEA) and dynamic mechanical analysis (DMA). The activation energies ( E a ) for viscous flow obtained from DMA stress relaxation experiments and from dielectric modulus and loss crossover points were shown to match well between the two techniques. The E a in stoichiometric systems was found to be 110–120 kJ mol −1 , whereas 50% excess thiol systems were characterized by E a ranging 95–105 kJ mol −1 . The thermodynamic equilibrium conversion, estimated in the temperature controlled FTIR, for a stoichiometric 3-mercaptopropionate-succinic anhydride combination was determined at 92 ± 1% at ambient temperature, and decreased to 67 ± 1% at 120 °C within one hour of equilibration time (Δ H ° = −46 ± 5 kJ mol −1 ). Such high potential for reversibility of the thioester anhydride linkages resembles maleimide-furan Diels–Alder networks but has many other attributes that make these CANs of unprecedented value in fundamental research on dynamic materials. 
    more » « less