skip to main content


Title: Midwinter Suppression of Storm Tracks in an Idealized Zonally Symmetric Setting
The midwinter suppression of eddy activity in the North Pacific storm track is a phenomenon that has resisted reproduction in idealized models that are initialized independently of the observed atmosphere. Attempts at explaining it have often focused on local mechanisms that depend on zonal asymmetries, such as effects of topography on the mean flow and eddies. Here an idealized aquaplanet GCM is used to demonstrate that a midwinter suppression can also occur in the activity of a statistically zonally symmetric storm track. For a midwinter suppression to occur, it is necessary that parameters, such as the thermal inertia of the upper ocean and the strength of tropical ocean energy transport, are chosen suitably to produce a pronounced seasonal cycle of the subtropical jet characteristics. If the subtropical jet is sufficiently strong and located close to the midlatitude storm track during midwinter, it dominates the upper-level flow and guides eddies equatorward, away from the low-level area of eddy generation. This inhibits the baroclinic interaction between upper and lower levels within the storm track and weakens eddy activity. However, as the subtropical jet continues to move poleward during late winter in the idealized GCM (and unlike what is observed), eddy activity picks up again, showing that the properties of the subtropical jet that give rise to the midwinter suppression are subtle. The idealized GCM simulations provide a framework within which possible mechanisms giving rise to a midwinter suppression of storm tracks can be investigated systematically.  more » « less
Award ID(s):
1760402
NSF-PAR ID:
10141028
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
77
Issue:
1
ISSN:
0022-4928
Page Range / eLocation ID:
297 to 313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Polar vortices are common planetary-scale flows that encircle the pole in the middle or high latitudes and are observed in most of the solar system’s planetary atmospheres. The polar vortices on Earth, Mars, and Titan are dynamically related to the mean meridional circulation and exhibit a significant seasonal cycle. However, the polar vortex’s characteristics vary between the three planets. To understand the mechanisms that influence the polar vortex’s dynamics and dependence on planetary parameters, we use an idealized general circulation model with a seasonal cycle in which we vary the obliquity, rotation rate, and orbital period. We find that there are distinct regimes for the polar vortex seasonal cycle across the parameter space. Some regimes have similarities to the observed polar vortices, including a weakening of the polar vortex during midwinter at slow rotation rates, similar to Titan’s polar vortex. Other regimes found within the parameter space have no counterpart in the solar system. In addition, we show that for a significant fraction of the parameter space, the vortex’s potential vorticity latitudinal structure is annular, similar to the observed structure of the polar vortices on Mars and Titan. We also find a suppression of storm activity during midwinter that resembles the suppression observed on Mars and Earth, which occurs in simulations where the jet velocity is particularly strong. This wide variety of polar vortex dynamical regimes that shares similarities with observed polar vortices, suggests that among exoplanets there can be a wide variability of polar vortices. 
    more » « less
  2. Abstract

    As a dominant mode of jet variability on subseasonal time scales, the Southern Annular Mode (SAM) provides a window into how the atmosphere can produce internal oscillations on longer-than-synoptic time scales. While SAM’s existence can be explained by dry, purely barotropic theories, the time scale for its persistence and propagation is set by a lagged interaction between barotropic and baroclinic mechanisms, making the exact physical mechanisms challenging to identify and to simulate, even in latest generation models. By partitioning the eddy momentum flux convergence in MERRA-2 using an eddy–mean flow interaction framework, we demonstrate that diabatic processes (condensation and radiative heating) are the main contributors to SAM’s persistence in its stationary regime, as well as the key for preventing propagation in this regime. In SAM’s propagating regime, baroclinic and diabatic feedbacks also dominate the eddy–jet feedback. However, propagation is initiated by barotropic shifts in upper-level wave breaking and then sustained by a baroclinic response, leading to a roughly 60-day oscillation period. This barotropic propagation mechanism has been identified in dry, idealized models, but here we show evidence of this mechanism for the first time in reanalysis. The diabatic feedbacks on SAM are consistent with modulation of the storm-track latitude by SAM, altering the emission temperature and cloud cover over individual waves. Therefore, future attempts to improve the SAM time scale in models should focus on the storm-track location, as well as the roles of the cloud and moisture parameterizations.

    Significance Statement

    As they circumnavigate the planet, the tropospheric jet streams slowly drift north and south over about 30 days, longer than the normal limit of weather prediction. Understanding the source of this “memory” could improve our knowledge of how the atmosphere organizes itself and our ability to make long-term forecasts. Current theories have identified several possible internal atmospheric interactions responsible for this memory. Yet most of the theories for understanding the jets’ behavior assume that this behavior is only weakly influenced by atmospheric water vapor. We show that this assumption is not enough to understand jet persistence. Instead, clouds and precipitation are more important contributors in reanalysis data than internal “dry” mechanisms to this memory of the Southern Hemisphere jet.

     
    more » « less
  3. null (Ed.)
    Abstract Baroclinic waves drive both regional variations in weather and large-scale variability in the extratropical general circulation. They generally do not exist in isolation, but rather often form into coherent wave packets that propagate to the east via a mechanism called downstream development. Downstream development has been widely documented and explored. Here we document a novel but also key aspect of baroclinic waves: the downstream suppression of baroclinic activity that occurs in the wake of eastward propagating disturbances. Downstream suppression is apparent not only in the Southern Hemisphere storm track as shown in previous work, but also in the North Pacific and North Atlantic storm tracks. It plays an essential role in driving subseasonal periodicity in extratropical eddy activity in both hemispheres, and gives rise to the observed quiescence of the North Atlantic storm track 1–2 weeks following pronounced eddy activity in the North Pacific sector. It is argued that downstream suppression results from the anomalously low baroclinicity that arises as eastward propagating wave packets convert potential to kinetic energy. In contrast to baroclinic wave packets, which propagate to the east at roughly the group velocity in the upper troposphere, the suppression of baroclinic activity propagates eastward at a slower rate that is comparable to that of the lower to midtropospheric flow. The results have implications for understanding subseasonal variability in the extratropical troposphere of both hemispheres. 
    more » « less
  4. The dynamics of an oceanic storm track—where energy and enstrophy transfer between the mean flow and eddies—are investigated using observations from an eddy-rich region of the Antarctic Circumpolar Current downstream of the Shackleton Fracture Zone (SFZ) in Drake Passage. Four years of measurements by an array of current- and pressure-recording inverted echo sounders deployed between November 2007 and November 2011 are used to diagnose eddy–mean flow interactions and provide insight into physical mechanisms for these transfers. Averaged within the upper to mid-water column (400–1000-m depth) and over the 4-yr-record mean field, eddy potential energy [Formula: see text] is highest in the western part of the storm track and maximum eddy kinetic energy [Formula: see text] occurs farther away from the SFZ, shifting the proportion of eddy energies from [Formula: see text] to about 1 along the storm track. There are enhanced mean 3D wave activity fluxes [Formula: see text] immediately downstream of SFZ with strong horizontal flux vectors emanating northeast from this region. Similar patterns across composites of Polar Front and Subantarctic Front meander intrusions suggest the dynamics are set more so by the presence of the SFZ than by the eddy’s sign. A case study showing the evolution of a single eddy event, from 15 to 23 July 2010, highlights the storm-track dynamics in a series of snapshots. Consistently, explaining the eddy energetics pattern requires both horizontal and vertical components of W, implying the importance of barotropic and baroclinic processes and instabilities in controlling storm-track dynamics in Drake Passage.

     
    more » « less
  5. Abstract

    The midwinter minimum in North Pacific storm‐track intensity is a perplexing phenomenon because the associatedlocalbaroclinity in the North Pacific is maximum during midwinter. Here, a new mechanism is proposed wherein the midwinter minimum occurs in part because global planetary‐scale waves consume the zonal available potential energy, limiting its availability for storm‐track eddy growth. During strong midwinter suppression years, the midwinter minimum is preceded by anomalously large planetary‐scale eddy kinetic energy and subsequent reduction in zonal available potential energy andglobalbaroclinity. Consistent with previous studies, this large planetary‐scale eddy kinetic energy takes place after enhanced Pacific warm pool convection, which peaks during winter. These results indicate that the midwinter minimum is in part caused by heightened warm pool convection, which, through excitation of planetary‐scale waves, leads to a weaker storm‐track. This finding also helps explain the existence of the midwinter North Atlantic storm‐track minimum.

     
    more » « less