skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Quantifying Eddy Generation and Dissipation in the Jet Response to Upper-versus Lower-level Thermal Forcing
Abstract The relative roles of upper- and lower-level thermal forcing in shifting the eddy driven jet are investigated using a multi-level nonlinear quasi-geostrophic channel model. The numerical experiments show that the upper-level thermal forcing is more efficient in shifting the eddy-driven jet. The finite-amplitude wave activity diagnostics of numerical results show that the dominance of the upper-level thermal forcing over the lower-level thermal forcing can be understood from their different influence on eddy generation and dissipation that affects the jet shift. The upper-level thermal forcing shifts the jet primarily by affecting the baroclinic generation of eddies. The lower-level thermal forcing influences the jet mainly by affecting the wave breaking and dissipation. The former eddy response turns out to be more efficient for the thermal forcing to shift the eddy-driven jet. Furthermore, two quantitative relationships based on the imposed thermal forcing are proposed to quantify the response of both eddy generation and eddy dissipation, and thus to help predict the shift of eddy-driven jet in response to the vertically non-uniform thermal forcing. By conducting the overriding experiments in which the response of barotropic zonal wind is locked in the model and a multi-wavenumber theory in which the eddy diffusivity is decomposed to contributions from eddies and mean flow, we find that the eddy generation response is sensitive to the vertical structure of the thermal forcing and can be quantified by the imposed temperature gradient in the upper troposphere. In contrast, the response of eddy diffusivity is almost vertically independent of the imposed forcing, and can be quantified by the imposed vertically-averaged thermal wind.  more » « less
Award ID(s):
1742178 1832842
NSF-PAR ID:
10356646
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
ISSN:
0022-4928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract While there is substantial evidence for tropospheric jet shift and Hadley cell expansion in response to greenhouse gas increases, quantitative assessments of individual mechanisms and feedback for atmospheric circulation changes remain lacking. We present a new forcing-feedback analysis on circulation response to increasing CO 2 concentration in an aquaplanet atmospheric model. This forcing-feedback framework explicitly identifies a direct zonal wind response by holding the zonal mean zonal wind exerting on the zonal advection of eddies unchanged, in comparison with the additional feedback induced by the direct response in zonal mean zonal wind. It is shown that the zonal advection feedback accounts for nearly half of the changes to the eddy-driven jet shift and Hadley cell expansion, largely contributing to the subtropical precipitation decline, when the CO 2 concentration varies over a range of climates. The direct response in temperature displays the well-known tropospheric warming pattern to CO2 increases, but the feedback exhibits negative signals. The direct response in eddies is characterized by a reduction in upward wave propagation and a poleward shift of midlatitude eddy momentum flux (EMF) convergence, likely due to an increase in static stability from moist thermodynamic adjustment. In contrast, the feedback features a dipole pattern in EMF that further shifts and strengthens midlatitude EMF convergence, resulting from the upper-level zonal wind increase seen in the direct response. Interestingly, the direct response produces an increase in eddy kinetic energy (EKE), but the feedback weakens EKE. Thus, the forcing-feedback framework highlights the distinct effect of zonal mean advecting wind from direct thermodynamic effects in atmospheric response to greenhouse gas increases. 
    more » « less
  2. Abstract The frequency and latitudinal dependence of the mid-latitude wind-driven meridional overturning circulation (MOC) is studied using theory and linear and nonlinear applications of a quasi-geostrophic numerical model. Wind-forcing is varied by either changing the strength of the wind or by shifting the meridional location of the wind stress curl pattern. At forcing periods less than the first mode baroclinic Rossby wave basin crossing time scale the linear response in the mid-depth and deep ocean is in phase and opposite to the Ekman transport. For forcing periods close to the Rossby wave basin crossing time scale, the upper and deep MOC are enhanced, and the mid-depth MOC becomes phase shifted, relative to the Ekman transport. At longer forcing periods the deep MOC weakens and the mid-depth MOC increases, but eventually for long enough forcing periods (decadal) the entire wind-driven MOC spins down. Nonlinearities and mesoscale eddies are found to be important in two ways. First, baroclinic instability causes the mid-depth MOC to weaken, lose correlation with the Ekman transport, and lose correlation with the MOC in the opposite gyre. Second, eddy thickness fluxes extend the MOC beyond the latitudes of direct wind forcing. These results are consistent with several recent studies describing the four-dimensional structure of the MOC in the North Atlantic. 
    more » « less
  3. The midwinter suppression of eddy activity in the North Pacific storm track is a phenomenon that has resisted reproduction in idealized models that are initialized independently of the observed atmosphere. Attempts at explaining it have often focused on local mechanisms that depend on zonal asymmetries, such as effects of topography on the mean flow and eddies. Here an idealized aquaplanet GCM is used to demonstrate that a midwinter suppression can also occur in the activity of a statistically zonally symmetric storm track. For a midwinter suppression to occur, it is necessary that parameters, such as the thermal inertia of the upper ocean and the strength of tropical ocean energy transport, are chosen suitably to produce a pronounced seasonal cycle of the subtropical jet characteristics. If the subtropical jet is sufficiently strong and located close to the midlatitude storm track during midwinter, it dominates the upper-level flow and guides eddies equatorward, away from the low-level area of eddy generation. This inhibits the baroclinic interaction between upper and lower levels within the storm track and weakens eddy activity. However, as the subtropical jet continues to move poleward during late winter in the idealized GCM (and unlike what is observed), eddy activity picks up again, showing that the properties of the subtropical jet that give rise to the midwinter suppression are subtle. The idealized GCM simulations provide a framework within which possible mechanisms giving rise to a midwinter suppression of storm tracks can be investigated systematically. 
    more » « less
  4. Abstract

    Comprehensive climate models exhibit a large spread in the magnitude of projected poleward eddy‐driven jet shift in response to warming. The spread has been connected to the radiative response to warming. To understand how different radiative assumptions alone affect the jet shift in response to warming, we introduce a new clear‐sky longwave radiation hierarchy that spans idealized (gray versus four bands; without or with interactive water vapor) through comprehensive (correlated‐k) radiation in the same general circulation model. The new hierarchy is used in an aquaplanet configuration to explore the impact of radiation on the jet stream response to warming, independent of mean surface temperature and meridional surface temperature gradient responses. The gray radiation scheme produces a split jet and its eddy‐driven jet shifts equatorward as climate warms, whereas the storm track shifts equatorward then poleward. Including four longwave bands leads to a merged jet that shifts slightly poleward with warming, and the storm track shifts monotonically poleward. Including interactive water vapor makes the poleward jet shift comparable to the jet shift with comprehensive radiation and interactive water vapor. These jet and storm track differences are linked to the radiation response of the stratospheric temperature, the tropopause height, and the meridional gradient of the radiative forcing to warming. Dynamically, the equatorward jet shift with the gray scheme is consistent with reduced wave reflection on the poleward flank of the jet, whereas the poleward jet shift with the other schemes is consistent with increased eddy length scale that favors equatorward wave propagation.

     
    more » « less
  5. The impact of global warming–induced intertropical convergence zone (ITCZ) narrowing onto the higher-latitude circulation is examined in the GFDL Atmospheric Model, version 2.1 (AM2.1), run over zonally symmetric aquaplanet boundary conditions. A striking reconfiguration of the deep tropical precipitation from double-peaked, off-equatorial ascent to a single peak at the equator occurs under a globally uniform +4 K sea surface temperature (SST) perturbation. This response is found to be highly sensitive to the SST profile used to force the model. By making small (≤1 K) perturbations to the surface temperature in the deep tropics, varying control simulation precipitation patterns with both single and double ITCZs are generated. Across the climatologies, narrower regions of ascent correspond to more equatorward Hadley cell edges and eddy-driven jets. Under the global warming perturbation, the experiments in which there is narrowing of the ITCZ show significantly less expansion of the Hadley cell and somewhat less poleward shift of the eddy-driven jet than those without ITCZ narrowing. With a narrower ITCZ, the ascending air has larger zonal momentum, causing more westerly upper-tropospheric subtropical wind. In turn, this implies 1) the subtropical jet will become baroclinically unstable at a lower latitude and 2) the critical (zero wind) line will shift equatorward, allowing midlatitude eddies to propagate farther equatorward. Both of these mechanisms modify the Hadley cell edge position, and the latter affects the jet position.

     
    more » « less