Abstract Porous graphene and other atomically thin 2D materials are regarded as highly promising membrane materials for high‐performance gas separations due to their atomic thickness, large‐scale synthesizability, excellent mechanical strength, and chemical stability. When these atomically thin materials contain a high areal density of gas‐sieving nanoscale pores, they can exhibit both high gas permeances and high selectivities, which is beneficial for reducing the cost of gas‐separation processes. Here, recent modeling and experimental advances in nanoporous atomically thin membranes for gas separations is discussed. The major challenges involved, including controlling pore size distributions, scaling up the membrane area, and matching theory with experimental results, are also highlighted. Finally, important future directions are proposed for real gas‐separation applications of nanoporous atomically thin membranes.
more »
« less
Computational Molecular Modeling of Transport Processes in Nanoporous Membranes
In this report we have discussed the important role of molecular modeling, especially the use of the molecular dynamics method, in investigating transport processes in nanoporous materials such as membranes. With the availability of high performance computers, molecular modeling can now be used to study rather complex systems at a fraction of the cost or time requirements of experimental studies. Molecular modeling techniques have the advantage of being able to access spatial and temporal resolution which are difficult to reach in experimental studies. For example, sub-Angstrom level spatial resolution is very accessible as is sub-femtosecond temporal resolution. Due to these advantages, simulation can play two important roles: Firstly because of the increased spatial and temporal resolution, it can help understand phenomena not well understood. As an example, we discuss the study of reverse osmosis processes. Before simulations were used it was thought the separation of water from salt was purely a coulombic phenomenon. However, by applying molecular simulation techniques, it was clearly demonstrated that the solvation of ions made the separation in effect a steric separation and it was the flux which was strongly affected by the coulombic interactions between water and the membrane surface. Additionally, because of their relatively low cost and quick turnaround (by using multiple processor systems now increasingly available) simulations can be a useful screening tool to identify membranes for a potential application. To this end, we have described our studies in determining the most suitable zeolite membrane for redox flow battery applications. As computing facilities become more widely available and new computational methods are developed, we believe molecular modeling will become a key tool in the study of transport processes in nanoporous materials.
more »
« less
- Award ID(s):
- 1545560
- PAR ID:
- 10141350
- Date Published:
- Journal Name:
- Processes
- Volume:
- 6
- Issue:
- 8
- ISSN:
- 2227-9717
- Page Range / eLocation ID:
- 124
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Molecular simulations serve as indispensable tools for investigating the kinetics and elucidating the mechanism of hindered ion transport across nanoporous membranes. In particular, recent advancements in advanced sampling techniques have made it possible to access translocation timescales spanning several orders of magnitude. In our prior study [Shoemaker et al., J. Chem. Theory Comput. 18, 7142 (2022)], we identified significant finite size artifacts in simulations of pressure-driven hindered ion transport through nanoporous graphitic membranes. We introduced the ideal conductor model, which effectively corrects for such artifacts by assuming the feed to be an ideal conductor. In the present work, we introduce the ideal conductor dielectric model (Icdm), a generalization of our earlier model, which accounts for the dielectric properties of both the membrane and the filtrate. Using the Icdm model substantially enhances the agreement among corrected free energy profiles obtained from systems of varying sizes, with notable improvements observed in regions proximate to the pore exit. Moreover, the model has the capability to consider secondary ion passage events, including the transport of a co-ion subsequent to the traversal of a counter-ion, a feature that is absent in our original model. We also investigate the sensitivity of the new model to various implementation details. The Icdm model offers a universally applicable framework for addressing finite size artifacts in molecular simulations of ion transport. It stands as a significant advancement in our quest to use molecular simulations to comprehensively understand and manipulate ion transport processes through nanoporous membranes.more » « less
-
Efficient separation of hydrogen under steam reforming conditions is important for the development of clean energy sources. Although high-temperature and steam-stable membranes with high fluxes and large separation factors would be valuable for such an application, their fabrication remains a challenge. Silicon-based ceramic membranes are particularly promising due to their high temperature resistance and excellent chemical stability. In this study, we propose a new synthetic route for fabricating nanoporous, asymmetric membranes via the pyrolysis of silicon-containing polymer films deposited by initiated chemical vapor deposition (iCVD) on macroporous silicon carbide supports. Specifically, we systematically investigated the change in the chemical structure of poly(2,4,6,8-tetravinyl-2,4,6,8-tetramethyl cyclotetrasiloxane) films at different pyrolysis temperatures and found that the complete transition to a silica membrane occurred at ~1100 °C. Three different supports composed of silicon carbide powders of varying sizes were tested for membrane preparation. It was found that membranes formed with our process were microporous with separation factors several times above the corresponding Knudsen factors. Our synthetic route, therefore, offers a scalable and solventless method for producing silicon-based ceramic membranes for high-temperature separation and sensor applications.more » « less
-
Membrane-based separations offer the potential for the lowest energy demand requirements of all separation options. Among all nanoporous membranes, the carbon molecular sieves (CMS), metal-organic frameworks (MOFs), and mixed-matrix membranes (MMMs) with angstrom level molecular discrimination properties makes them appealing for separating a wide spectrum of gas-pairs. Here we present results of gas selectivity and diffusion of different gases (C2H6, C2H4, C3H8, C3H6, H2, N2, CO2, and CH4) in porous organic cages (POCs) incorporated into fluorinated copolyimides polymers (FCPs). The FCPs were synthesized by the iridization reaction of fluorinated dianhydrides, nonfluorinated dianhydride, and nonfluorinated diamine. Asymmetric hollow fiber membranes formed by the dry-jet/wet-quench spinning process. Once fresh FCP fibers were synthesized, they were crosslinked with POCs, vacuum dried at 90 °C. We investigated the uptake, gas selectivity and diffusion of different gases (C2H6, C2H4, C3H8, C3H6, H2, N2, CO2, and CH4) over synthesized POC-mixed matrixed membranes (POC-MMM) at 25 °C and pressures up to 1 bar. At 1 bar and 25 °C, C2H6, C2H4, C3H8, C3H6 adsorption capacities reached to 42.61, 2.56, 2.77 and 2.65 mmol/g over POC-MMM, respectively, while CO2, CH4, CO, N2 and H2 adsorption capacities of 1.48, 0.84, 0.33, 0.11, and 0.068 mmol/g, respectively. Furthermore, stable CMS membrane were formed by pyrolysis of POC-MMMs under an inert argon atmosphere at 1 atm. To test the gas transport properties of CMS-derived POC/MMM, a lab-scale hollow fiber module with two-five fibers was constructed. The results of longer-term operation of synthesized CMS membrane that was continuously operated for 264 h (10 days) with an equimolar binary H2/CO2, CH4/CO2 and C3H6/C3H8 feed at 25°C and 1 bar feed pressure. The modification yielded promising results in the reduction of physical aging of CMS membranes.more » « less
-
In membrane-based separation, molecular size differences relative to membrane pore sizes govern mass flux and separation efficiency. In applications requiring complex molecular differentiation, such as in natural gas processing, cascaded pore size distributions in membranes allow different permeate molecules to be separated without a reduction in throughput. Here, we report the decoration of microporous polymer membrane surfaces with molecular fluorine. Molecular fluorine penetrates through the microporous interface and reacts with rigid polymeric backbones, resulting in membrane micropores with multimodal pore size distributions. The fluorine acts as angstrom-scale apertures that can be controlled for molecular transport. We achieved a highly effective gas separation performance in several industrially relevant hollow-fibrous modular platform with stable responses over 1 year.more » « less
An official website of the United States government

