skip to main content


Title: A Raman Spectroscopic and Computational Study of New Aromatic Pyrimidine-Based Halogen Bond Acceptor
Two new aromatic pyrimidine-based derivatives designed specifically for halogen bond directed self-assembly are investigated through a combination of high-resolution Raman spectroscopy, X-ray crystallography, and computational quantum chemistry. The vibrational frequencies of these new molecular building blocks, pyrimidine capped with furan (PrmF) and thiophene (PrmT), are compared to those previously assigned for pyrimidine (Prm). The modifications affect only a select few of the normal modes of Prm, most noticeably its signature ring breathing mode, ν1. Structural analyses afforded by X-ray crystallography, and computed interaction energies from density functional theory computations indicate that, although weak hydrogen bonding (C–H···O or C–H···N interactions) is present in these pyrimidine-based solid-state co-crystals, halogen bonding and π-stacking interactions play more dominant roles in driving their molecular-assembly.  more » « less
Award ID(s):
1652094
NSF-PAR ID:
10141578
Author(s) / Creator(s):
Date Published:
Journal Name:
Inorganics
ISSN:
2304-6740
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Two new aromatic pyrimidine-based derivatives designed specifically for halogen bond directed self-assembly are investigated through a combination of high-resolution Raman spectroscopy, X-ray crystallography, and computational quantum chemistry. The vibrational frequencies of these new molecular building blocks, pyrimidine capped with furan (PrmF) and thiophene (PrmT), are compared to those previously assigned for pyrimidine (Prm). The modifications affect only a select few of the normal modes of Prm, most noticeably its signature ring breathing mode, ν1. Structural analyses afforded by X-ray crystallography, and computed interaction energies from density functional theory computations indicate that, although weak hydrogen bonding (C–H···O or C–H···N interactions) is present in these pyrimidine-based solid-state co-crystals, halogen bonding and π-stacking interactions play more dominant roles in driving their molecular-assembly. 
    more » « less
  2. Abstract

    Covalent capsule1was designed to include two molecular baskets linked with three mobile pyridines tucked into its inner space. On the basis of both theory (DFT) and experiments (NMR and X‐ray crystallography), we found that the pyridine “doors” split the chamber (380 Å3) of1so that two equally sizeable compartments (190 Å3) became joined through a conformationally flexible aromatic barrier. The compartments of such unique host could be populated with CCl4(88 Å3; PC=46 %), CBr4(106 Å3; 56 %) or their combination CCl4/CBr4(PC=51 %), with thermodynamic stabilities ΔG° tracking the values of packing coefficients (PC). Halogen (C−X⋅⋅⋅π) and hydrogen bonding (C−H⋅⋅⋅X) contacts held the haloalkane guests in the cavities of1. The consecutive complexations were found to occur in a negative allosteric manner, which we propose to result from the induced‐fit mode of complexation. Newly designed1opens a way for probing the effects of inner conformational dynamics on noncovalent interactions, reactivity and intramolecular translation in confined spaces of hollow molecules.

     
    more » « less
  3. Abstract

    Peptide‐mediated self‐assembly is a prevalent method for creating highly ordered supramolecular architectures. Herein, we report the first example of orthogonal C−X⋅⋅⋅X−C/C−X⋅⋅⋅π halogen bonding and hydrogen bonding driven crystalline architectures based on synthetic helical peptides bearing hybrids ofl‐sulfono‐γ‐AApeptides and natural amino acids. The combination of halogen bonding, intra‐/intermolecular hydrogen bonding, and intermolecular hydrophobic interactions enabled novel 3D supramolecular assembly. The orthogonal halogen bonding in the supramolecular architecture exerts a novel mechanism for the self‐assembly of synthetic peptide foldamers and gives new insights into molecular recognition, supramolecular design, and rational design of biomimetic structures.

     
    more » « less
  4. Abstract

    Peptide‐mediated self‐assembly is a prevalent method for creating highly ordered supramolecular architectures. Herein, we report the first example of orthogonal C−X⋅⋅⋅X−C/C−X⋅⋅⋅π halogen bonding and hydrogen bonding driven crystalline architectures based on synthetic helical peptides bearing hybrids ofl‐sulfono‐γ‐AApeptides and natural amino acids. The combination of halogen bonding, intra‐/intermolecular hydrogen bonding, and intermolecular hydrophobic interactions enabled novel 3D supramolecular assembly. The orthogonal halogen bonding in the supramolecular architecture exerts a novel mechanism for the self‐assembly of synthetic peptide foldamers and gives new insights into molecular recognition, supramolecular design, and rational design of biomimetic structures.

     
    more » « less
  5. This study expands and combines concepts from two of our earlier studies. One study reported the complementary halogen bonding and π-π charge transfer complexation observed between isomeric electron rich 4-N,N-dimethylaminophenylethynylpyridines and the electron poor halogen bond donor, 1-(3,5-dinitrophenylethynyl)-2,3,5,6-tetrafluoro-4-iodobenzene while the second study elaborated the ditopic halogen bonding of activated pyrimidines. Leveraging our understanding on the combination of these non-covalent interactions, we describe cocrystallization featuring ditopic halogen bonding and π-stacking. Specifically, red cocrystals are formed between the ditopic electron poor halogen bond donor 1-(3,5-dinitrophenylethynyl)-2,4,6-triflouro-3,5-diiodobenzene and each of electron rich pyrimidines 2- and 5-(4-N,N-dimethyl-aminophenylethynyl)pyrimidine. The X-ray single crystal structures of these cocrystals are described in terms of halogen bonding and electron donor-acceptor π-complexation. Computations confirm that the donor-acceptor π-stacking interactions are consistently stronger than the halogen bonding interactions and that there is cooperativity between π-stacking and halogen bonding in the crystals. 
    more » « less