skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Resource-Efficient Wearable Computing for Real-Time Reconfigurable Machine Learning: A Cascading Binary Classification
Advances in embedded systems have enabled integration of many lightweight sensory devices within our daily life. In particular, this trend has given rise to continuous expansion of wearable sensors in a broad range of applications from health and fitness monitoring to social networking and military surveillance. Wearables leverage machine learning techniques to profile behavioral routine of their end-users through activity recognition algorithms. Current research assumes that such machine learning algorithms are trained offline. In reality, however, wearables demand continuous reconfiguration of their computational algorithms due to their highly dynamic operation. Developing a personalized and adaptive machine learning model requires real-time reconfiguration of the model. Due to stringent computation and memory constraints of these embedded sensors, the training/re-training of the computational algorithms need to be memory- and computation-efficient. In this paper, we propose a framework, based on the notion of online learning, for real-time and on-device machine learning training. We propose to transform the activity recognition problem from a multi-class classification problem to a hierarchical model of binary decisions using cascading online binary classifiers. Our results, based on Pegasos online learning, demonstrate that the proposed approach achieves 97% accuracy in detecting activities of varying intensities using a limited memory while power usages of the system is reduced by more than 40%.  more » « less
Award ID(s):
1750679
PAR ID:
10141723
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2019 IEEE 16th International Conference on Wearable and Implantable Body Sensor Networks (BSN)
Page Range / eLocation ID:
1-4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The recent success of deep neural networks in prediction tasks on wearable sensor data is evident. However, in more practical online learning scenarios, where new data arrive sequentially, neural networks suffer severely from the ``catastrophic forgetting`` problem. In real-world settings, given a pre-trained model on the old data, when we collect new data, it is practically infeasible to re-train the model on both old and new data because the computational costs will increase dramatically as more and more data arrive in time. However, if we fine-tune the model only with the new data because the new data might be different from the old data, the neural network parameters will change to fit the new data. As a result, the new parameters are no longer suitable for the old data. This phenomenon is known as catastrophic forgetting, and continual learning research aims to overcome this problem with minimal computational costs. While most of the continual learning research focuses on computer vision tasks, implications of catastrophic forgetting in wearable computing research and potential avenues to address this problem have remained unexplored. To address this knowledge gap, we study continual learning for activity recognition using wearable sensor data. We show that the catastrophic forgetting problem is a critical challenge for real-world deployment of machine learning models for wearables. Moreover, we show that the catastrophic forgetting problem can be alleviated by employing various training techniques. 
    more » « less
  2. Binary classification is a fundamental machine learning task defined as correctly assigning new objects to one of two groups based on a set of training objects. Driven by the practical importance of binary classification, numerous machine learning techniques have been developed and refined over the last three decades. Among the most popular techniques are artificial neural networks, decision trees, ensemble methods, logistic regression, and support vector machines. We present here machine learning and pattern recognition algorithms that, unlike the commonly used techniques, are based on combinatorial optimization and make use of information on pairwise relations between the objects of the data set, whether training objects or not. These algorithms solve the respective problems optimally and efficiently, in contrast to the primarily heuristic approaches currently used for intractable problem models in pattern recognition and machine learning. The algorithms described solve efficiently the classification problem as a network flow problem on a graph. The technical tools used in the algorithm are the parametric cut procedure and a process called sparse computation that computes only the pairwise similarities that are “relevant.” Sparse computation enables the scalability of any algorithm that uses pairwise similarities. We present evidence on the effectiveness of the approaches, measured in terms of accuracy and running time, in pattern recognition, image segmentation, and general data mining. 
    more » « less
  3. null (Ed.)
    We propose a novel active learning framework for activity recognition using wearable sensors. Our work is unique in that it takes physical and cognitive limitations of the oracle into account when selecting sensor data to be annotated by the oracle. Our approach is inspired by human-beings' limited capacity to respond to external stimulus such as responding to a prompt on their mobile devices. This capacity constraint is manifested not only in the number of queries that a person can respond to in a given time-frame but also in the lag between the time that a query is made and when it is responded to. We introduce the notion of mindful active learning and propose a computational framework, called EMMA, to maximize the active learning performance taking informativeness of sensor data, query budget, and human memory into account. We formulate this optimization problem, propose an approach to model memory retention, discuss complexity of the problem, and propose a greedy heuristic to solve the problem. We demonstrate the effectiveness of our approach on three publicly available datasets and by simulating oracles with various memory strengths. We show that the activity recognition accuracy ranges from 21% to 97% depending on memory strength, query budget, and difficulty of the machine learning task. Our results also indicate that EMMA achieves an accuracy level that is, on average, 13.5% higher than the case when only informativeness of the sensor data is considered for active learning. Additionally, we show that the performance of our approach is at most 20% less than experimental upper-bound and up to 80% higher than experimental lower-bound. We observe that mindful active learning is most beneficial when query budget is small and/or oracle's memory is weak, thus emphasizing contributions of our work in human-centered mobile health settings and for elderly with cognitive impairments. 
    more » « less
  4. Recent advances in machine learning and deep neural networks have led to the realization of many important applications in the area of personalized medicine. Whether it is detecting activities of daily living or analyzing images for cancerous cells, machine learning algorithms have become the dominant choice for such emerging applications. In particular, the state-of-the-art algorithms used for human activity recognition (HAR) using wearable inertial sensors utilize machine learning algorithms to detect health events and to make predictions from sensor data. Currently, however, there remains a gap in research on whether or not and how activity recognition algorithms may become the subject of adversarial attacks. In this paper, we take the first strides on (1) investigating methods of generating adversarial example in the context of HAR systems; (2) studying the vulnerability of activity recognition models to adversarial examples in feature and signal domain; and (3) investigating the effects of adversarial training on HAR systems. We introduce Adar, a novel computational framework for optimization-driven creation of adversarial examples in sensor-based activity recognition systems. Through extensive analysis based on real sensor data collected with human subjects, we found that simple evasion attacks are able to decrease the accuracy of a deep neural network from 95.1% to 3.4% and from 93.1% to 16.8% in the case of a convolutional neural network. With adversarial training, the robustness of the deep neural network increased on the adversarial examples by 49.1% in the worst case while the accuracy on clean samples decreased by 13.2%. 
    more » « less
  5. Large-scale machine learning (ML) models are increasingly being used in critical domains like education, lending, recruitment, healthcare, criminal justice, etc. However, the training, deployment, and utilization of these models demand substantial computational resources. To decrease computation and memory costs, machine learning models with sparse weight matrices are widely used in the literature. Among sparse models, those with special sparse structures (e.g., models with block-wise sparse weight matrices) fit better with the hardware accelerators and can decrease the memory and computation costs during the inference. Unfortunately, while there are several efficient training methods, none of them are designed to train a block-wise sparse model efficiently. As a result, the current methods for training block-wise sparse models start with full and dense models leading to inefficient training. In this work, we focus on training models with block-wise sparse matrices and propose an efficient training algorithm to decrease both computation and memory costs during training and inference. In addition, we will show that our proposed method enables us to efficiently find the right block size for the sparsity pattern during the training process. Our extensive empirical and theoretical analyses show that our algorithms can decrease the computation and memory costs significantly without a performance drop compared to baselines. 
    more » « less