skip to main content

Title: Resource-Efficient Wearable Computing for Real-Time Reconfigurable Machine Learning: A Cascading Binary Classification
Advances in embedded systems have enabled integration of many lightweight sensory devices within our daily life. In particular, this trend has given rise to continuous expansion of wearable sensors in a broad range of applications from health and fitness monitoring to social networking and military surveillance. Wearables leverage machine learning techniques to profile behavioral routine of their end-users through activity recognition algorithms. Current research assumes that such machine learning algorithms are trained offline. In reality, however, wearables demand continuous reconfiguration of their computational algorithms due to their highly dynamic operation. Developing a personalized and adaptive machine learning model requires real-time reconfiguration of the model. Due to stringent computation and memory constraints of these embedded sensors, the training/re-training of the computational algorithms need to be memory- and computation-efficient. In this paper, we propose a framework, based on the notion of online learning, for real-time and on-device machine learning training. We propose to transform the activity recognition problem from a multi-class classification problem to a hierarchical model of binary decisions using cascading online binary classifiers. Our results, based on Pegasos online learning, demonstrate that the proposed approach achieves 97% accuracy in detecting activities of varying intensities using a limited memory while power usages of the system is reduced by more than 40%.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2019 IEEE 16th International Conference on Wearable and Implantable Body Sensor Networks (BSN)
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Raynal, Ann M. ; Ranney, Kenneth I. (Ed.)
    Most research in technologies for the Deaf community have focused on translation using either video or wearable devices. Sensor-augmented gloves have been reported to yield higher gesture recognition rates than camera-based systems; however, they cannot capture information expressed through head and body movement. Gloves are also intrusive and inhibit users in their pursuit of normal daily life, while cameras can raise concerns over privacy and are ineffective in the dark. In contrast, RF sensors are non-contact, non-invasive and do not reveal private information even if hacked. Although RF sensors are unable to measure facial expressions or hand shapes, which would be required for complete translation, this paper aims to exploit near real-time ASL recognition using RF sensors for the design of smart Deaf spaces. In this way, we hope to enable the Deaf community to benefit from advances in technologies that could generate tangible improvements in their quality of life. More specifically, this paper investigates near real-time implementation of machine learning and deep learning architectures for the purpose of sequential ASL signing recognition. We utilize a 60 GHz RF sensor which transmits a frequency modulation continuous wave (FMWC waveform). RF sensors can acquire a unique source of information that is inaccessible to optical or wearable devices: namely, a visual representation of the kinematic patterns of motion via the micro-Doppler signature. Micro-Doppler refers to frequency modulations that appear about the central Doppler shift, which are caused by rotational or vibrational motions that deviate from principle translational motion. In prior work, we showed that fractal complexity computed from RF data could be used to discriminate signing from daily activities and that RF data could reveal linguistic properties, such as coarticulation. We have also shown that machine learning can be used to discriminate with 99% accuracy the signing of native Deaf ASL users from that of copysigning (or imitation signing) by hearing individuals. Therefore, imitation signing data is not effective for directly training deep models. But, adversarial learning can be used to transform imitation signing to resemble native signing, or, alternatively, physics-aware generative models can be used to synthesize ASL micro-Doppler signatures for training deep neural networks. With such approaches, we have achieved over 90% recognition accuracy of 20 ASL signs. In natural environments, however, near real-time implementations of classification algorithms are required, as well as an ability to process data streams in a continuous and sequential fashion. In this work, we focus on extensions of our prior work towards this aim, and compare the efficacy of various approaches for embedding deep neural networks (DNNs) on platforms such as a Raspberry Pi or Jetson board. We examine methods for optimizing the size and computational complexity of DNNs for embedded micro-Doppler analysis, methods for network compression, and their resulting sequential ASL recognition performance. 
    more » « less
  2. The recent success of deep neural networks in prediction tasks on wearable sensor data is evident. However, in more practical online learning scenarios, where new data arrive sequentially, neural networks suffer severely from the ``catastrophic forgetting`` problem. In real-world settings, given a pre-trained model on the old data, when we collect new data, it is practically infeasible to re-train the model on both old and new data because the computational costs will increase dramatically as more and more data arrive in time. However, if we fine-tune the model only with the new data because the new data might be different from the old data, the neural network parameters will change to fit the new data. As a result, the new parameters are no longer suitable for the old data. This phenomenon is known as catastrophic forgetting, and continual learning research aims to overcome this problem with minimal computational costs. While most of the continual learning research focuses on computer vision tasks, implications of catastrophic forgetting in wearable computing research and potential avenues to address this problem have remained unexplored. To address this knowledge gap, we study continual learning for activity recognition using wearable sensor data. We show that the catastrophic forgetting problem is a critical challenge for real-world deployment of machine learning models for wearables. Moreover, we show that the catastrophic forgetting problem can be alleviated by employing various training techniques. 
    more » « less
  3. Identifying cause-effect relations among variables is a key step in the decision-making process. Whereas causal inference requires randomized experiments, researchers and policy makers are increasingly using observational studies to test causal hypotheses due to the wide availability of data and the infeasibility of experiments. The matching method is the most used technique to make causal inference from observational data. However, the pair assignment process in one-to-one matching creates uncertainty in the inference because of different choices made by the experimenter. Recently, discrete optimization models have been proposed to tackle such uncertainty; however, they produce 0-1 nonlinear problems and lack scalability. In this work, we investigate this emerging data science problem and develop a unique computational framework to solve the robust causal inference test instances from observational data with continuous outcomes. In the proposed framework, we first reformulate the nonlinear binary optimization problems as feasibility problems. By leveraging the structure of the feasibility formulation, we develop greedy schemes that are efficient in solving robust test problems. In many cases, the proposed algorithms achieve a globally optimal solution. We perform experiments on real-world data sets to demonstrate the effectiveness of the proposed algorithms and compare our results with the state-of-the-art solver. Our experiments show that the proposed algorithms significantly outperform the exact method in terms of computation time while achieving the same conclusion for causal tests. Both numerical experiments and complexity analysis demonstrate that the proposed algorithms ensure the scalability required for harnessing the power of big data in the decision-making process. Finally, the proposed framework not only facilitates robust decision making through big-data causal inference, but it can also be utilized in developing efficient algorithms for other nonlinear optimization problems such as quadratic assignment problems. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This work was supported by the Division of Civil, Mechanical and Manufacturing Innovation of the National Science Foundation [Grant 2047094]. Supplemental Material: The online supplements are available at . 
    more » « less
  4. null (Ed.)
    We propose a novel active learning framework for activity recognition using wearable sensors. Our work is unique in that it takes physical and cognitive limitations of the oracle into account when selecting sensor data to be annotated by the oracle. Our approach is inspired by human-beings' limited capacity to respond to external stimulus such as responding to a prompt on their mobile devices. This capacity constraint is manifested not only in the number of queries that a person can respond to in a given time-frame but also in the lag between the time that a query is made and when it is responded to. We introduce the notion of mindful active learning and propose a computational framework, called EMMA, to maximize the active learning performance taking informativeness of sensor data, query budget, and human memory into account. We formulate this optimization problem, propose an approach to model memory retention, discuss complexity of the problem, and propose a greedy heuristic to solve the problem. We demonstrate the effectiveness of our approach on three publicly available datasets and by simulating oracles with various memory strengths. We show that the activity recognition accuracy ranges from 21% to 97% depending on memory strength, query budget, and difficulty of the machine learning task. Our results also indicate that EMMA achieves an accuracy level that is, on average, 13.5% higher than the case when only informativeness of the sensor data is considered for active learning. Additionally, we show that the performance of our approach is at most 20% less than experimental upper-bound and up to 80% higher than experimental lower-bound. We observe that mindful active learning is most beneficial when query budget is small and/or oracle's memory is weak, thus emphasizing contributions of our work in human-centered mobile health settings and for elderly with cognitive impairments. 
    more » « less
  5. null (Ed.)
    With the recent advances in both machine learning and embedded systems research, the demand to deploy computational models for real-time execution on edge devices has increased substantially. Without deploying computational models on edge devices, the frequent transmission of sensor data to the cloud results in rapid battery draining due to the energy consumption of wireless data transmission. This rapid power dissipation leads to a considerable reduction in the battery lifetime of the system, therefore jeopardizing the real-world utility of smart devices. It is well-established that for difficult machine learning tasks, models with higher performance often require more computation power and thus are not power-efficient choices for deployment on edge devices. However, the trade-offs between performance and power consumption are not well studied. While numerous methods (e.g., model compression) have been developed to obtain an optimal model, these methods focus on improving the efficiency of a single model. In an entirely new direction, we introduce an effective method to find a combination of multiple models that are optimal in terms of power-efficiency and performance by solving an optimization problem in which both performance and power consumption are taken into account. Experimental results demonstrate that on the ImageNet dataset, we can achieve a 20% energy reduction with only 0.3% accuracy drop compared to Squeeze-and-Excitation Networks. Compared to a pruned convolutional neural network for human activity recognition, while consuming 1.7% less energy, our proposed policy achieves 1.3% higher accuracy. 
    more » « less