skip to main content


Title: Online Network Topology Inference with Partial Connectivity Information
We develop algorithms for online topology inference from streaming nodal observations and partial connectivity information; i.e., a priori knowledge on the presence or absence of a few edges may be available as in the link prediction problem. The observations are modeled as stationary graph signals generated by local diffusion dynamics on the unknown network. Said stationarity assumption implies the simultaneous diagonalization of the observations' covariance matrix and the so-called graph shift operator (GSO), here the adjacency matrix of the sought graph. When the GSO eigenvectors are perfectly obtained from the ensemble covariance, we examine the structure of the feasible set of adjacency matrices and its dependency on the prior connectivity information available. In practice one can only form an empirical estimate of the covariance matrix, so we develop an alternating algorithm to find a sparse GSO given its imperfectly estimated eigenvectors. Upon sensing new diffused observations in the streaming setting, we efficiently update eigenvectors and perform only one (or a few) online iteration(s) of the proposed algorithm until a new datum is observed. Numerical tests showcase the effectiveness of the novel batch and online algorithms in recovering real-world graphs.  more » « less
Award ID(s):
1750428
NSF-PAR ID:
10142018
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)
Page Range / eLocation ID:
226 - 230
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We address the problem of online topology inference from streaming nodal observations of graph signals generated by linear diffusion dynamics on the sought graph. To that end, we leverage the stationarity of the signals and use the so-called graph-shift operator (GSO) as a matrix representation of the graph. Under this model, estimated covariance eigenvectors obtained from streaming independent graph signals diffused on the sought network are a valid estimator of the GSO's spectral templates. We develop an ADMM algorithm to find a sparse and structurally admissible GSO given the eigenvectors estimate. Then, we propose an online scheme that upon sensing new diffused observations, efficiently updates eigenvectors (thus makes more accurate on expectation) and performs only one or a few iterations of the mentioned ADMM until the new data is observed. Numerical tests illustrate the effectiveness of the proposed topology inference approach in recovering large scale graphs, adapting to streaming information, and accommodating changes in the sought network. 
    more » « less
  2. null (Ed.)
    We develop online graph learning algorithms from streaming network data. Our goal is to track the (possibly) time-varying network topology, and affect memory and computational savings by processing the data on-the-fly as they are acquired. The setup entails observations modeled as stationary graph signals generated by local diffusion dynamics on the unknown network. Moreover, we may have a priori information on the presence or absence of a few edges as in the link prediction problem. The stationarity assumption implies that the observations’ covariance matrix and the so-called graph shift operator (GSO—a matrix encoding the graph topology) commute under mild requirements. This motivates formulating the topology inference task as an inverse problem, whereby one searches for a sparse GSO that is structurally admissible and approximately commutes with the observations’ empirical covariance matrix. For streaming data, said covariance can be updated recursively, and we show online proximal gradient iterations can be brought to bear to efficiently track the time-varying solution of the inverse problem with quantifiable guarantees. Specifically, we derive conditions under which the GSO recovery cost is strongly convex and use this property to prove that the online algorithm converges to within a neighborhood of the optimal time-varying batch solution. Numerical tests illustrate the effectiveness of the proposed graph learning approach in adapting to streaming information and tracking changes in the sought dynamic network. 
    more » « less
  3. null (Ed.)
    We leverage proximal gradient iterations to develop an online graph learning algorithm from streaming network data. Our goal is to track the (possibly) time-varying network topology, and effect memory and computational savings by processing the data on-the-fly as they are acquired. The setup entails observations modeled as stationary graph signals generated by local diffusion dynamics on the unknown network. Moreover, we may have a priori information on the presence or absence of a few edges as in the link prediction problem. The stationarity assumption implies that the observations' covariance matrix and the so-called graph shift operator (GSO - a matrix encoding the graph topology) commute under mild requirements. This motivates formulating the topology inference task as an inverse problem, whereby one searches for a (e.g., sparse) GSO that is structurally admissible and approximately commutes with the observations' empirical covariance matrix. For streaming data said covariance can be updated recursively, and we show online proximal gradient iterations can be brought to bear to efficiently track the time-varying solution of the inverse problem with quantifiable guarantees. Specifically, we derive conditions under which the GSO recovery cost is strongly convex and use this property to prove that the online algorithm converges to within a neighborhood of the optimal time-varying batch solution. Preliminary numerical tests illustrate the effectiveness of the proposed graph learning approach in adapting to streaming information and tracking changes in the sought dynamic network. 
    more » « less
  4. There has been a flurry of recent literature studying streaming algorithms for which the input stream is chosen adaptively by a black-box adversary who observes the output of the streaming algorithm at each time step. However, these algorithms fail when the adversary has access to the internal state of the algorithm, rather than just the output of the algorithm. We study streaming algorithms in the white-box adversarial model, where the stream is chosen adaptively by an adversary who observes the entire internal state of the algorithm at each time step. We show that nontrivial algorithms are still possible. We first give a randomized algorithm for the L1-heavy hitters problem that outperforms the optimal deterministic Misra-Gries algorithm on long streams. If the white-box adversary is computationally bounded, we use cryptographic techniques to reduce the memory of our L1-heavy hitters algorithm even further and to design a number of additional algorithms for graph, string, and linear algebra problems. The existence of such algorithms is surprising, as the streaming algorithm does not even have a secret key in this model, i.e., its state is entirely known to the adversary. One algorithm we design is for estimating the number of distinct elements in a stream with insertions and deletions achieving a multiplicative approximation and sublinear space; such an algorithm is impossible for deterministic algorithms. We also give a general technique that translates any two-player deterministic communication lower bound to a lower bound for randomized algorithms robust to a white-box adversary. In particular, our results show that for all p ≥ 0, there exists a constant Cp > 1 such that any Cp-approximation algorithm for Fp moment estimation in insertion-only streams with a white-box adversary requires Ω(n) space for a universe of size n. Similarly, there is a constant C > 1 such that any C-approximation algorithm in an insertion-only stream for matrix rank requires Ω(n) space with a white-box adversary. These results do not contradict our upper bounds since they assume the adversary has unbounded computational power. Our algorithmic results based on cryptography thus show a separation between computationally bounded and unbounded adversaries. Finally, we prove a lower bound of Ω(log n) bits for the fundamental problem of deterministic approximate counting in a stream of 0’s and 1’s, which holds even if we know how many total stream updates we have seen so far at each point in the stream. Such a lower bound for approximate counting with additional information was previously unknown, and in our context, it shows a separation between multiplayer deterministic maximum communication and the white-box space complexity of a streaming algorithm 
    more » « less
  5. We consider algorithms with access to an unknown matrix M ε F n×d via matrix-vector products , namely, the algorithm chooses vectors v 1 , ⃛ , v q , and observes Mv 1 , ⃛ , Mv q . Here the v i can be randomized as well as chosen adaptively as a function of Mv 1 , ⃛ , Mv i-1 . Motivated by applications of sketching in distributed computation, linear algebra, and streaming models, as well as connections to areas such as communication complexity and property testing, we initiate the study of the number q of queries needed to solve various fundamental problems. We study problems in three broad categories, including linear algebra, statistics problems, and graph problems. For example, we consider the number of queries required to approximate the rank, trace, maximum eigenvalue, and norms of a matrix M; to compute the AND/OR/Parity of each column or row of M, to decide whether there are identical columns or rows in M or whether M is symmetric, diagonal, or unitary; or to compute whether a graph defined by M is connected or triangle-free. We also show separations for algorithms that are allowed to obtain matrix-vector products only by querying vectors on the right, versus algorithms that can query vectors on both the left and the right. We also show separations depending on the underlying field the matrix-vector product occurs in. For graph problems, we show separations depending on the form of the matrix (bipartite adjacency versus signed edge-vertex incidence matrix) to represent the graph. Surprisingly, very few works discuss this fundamental model, and we believe a thorough investigation of problems in this model would be beneficial to a number of different application areas. 
    more » « less