skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Querying a Matrix through Matrix-Vector Products
We consider algorithms with access to an unknown matrix M ε F n×d via matrix-vector products , namely, the algorithm chooses vectors v 1 , ⃛ , v q , and observes Mv 1 , ⃛ , Mv q . Here the v i can be randomized as well as chosen adaptively as a function of Mv 1 , ⃛ , Mv i-1 . Motivated by applications of sketching in distributed computation, linear algebra, and streaming models, as well as connections to areas such as communication complexity and property testing, we initiate the study of the number q of queries needed to solve various fundamental problems. We study problems in three broad categories, including linear algebra, statistics problems, and graph problems. For example, we consider the number of queries required to approximate the rank, trace, maximum eigenvalue, and norms of a matrix M; to compute the AND/OR/Parity of each column or row of M, to decide whether there are identical columns or rows in M or whether M is symmetric, diagonal, or unitary; or to compute whether a graph defined by M is connected or triangle-free. We also show separations for algorithms that are allowed to obtain matrix-vector products only by querying vectors on the right, versus algorithms that can query vectors on both the left and the right. We also show separations depending on the underlying field the matrix-vector product occurs in. For graph problems, we show separations depending on the form of the matrix (bipartite adjacency versus signed edge-vertex incidence matrix) to represent the graph. Surprisingly, very few works discuss this fundamental model, and we believe a thorough investigation of problems in this model would be beneficial to a number of different application areas.  more » « less
Award ID(s):
1815840
PAR ID:
10330050
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM Transactions on Algorithms
Volume:
17
Issue:
4
ISSN:
1549-6325
Page Range / eLocation ID:
1 to 19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We prove lower bounds on the time and space required for quantum computers to solve a wide variety of problems involving matrices, many of which have only been analyzed classically in prior work. Using a novel way of applying recording query methods we show that for many linear algebra problems—including matrix-vector product, matrix inversion, matrix multiplication and powering—existing classical time-space tradeoffs also apply to quantum algorithms with at most a constant factor loss. For example, for almost all fixed matrices A, including the discrete Fourier transform (DFT) matrix, we prove that quantum circuits with at most T input queries and S qubits of memory require T=Ω(n^2/S) to compute matrix-vector product Ax for x ∈ {0,1}^n. We similarly prove that matrix multiplication for nxn binary matrices requires T=Ω(n^3/√S). Because many of our lower bounds are matched by deterministic algorithms with the same time and space complexity, our results show that quantum computers cannot provide any asymptotic advantage for these problems at any space bound. We also improve the previous quantum time-space tradeoff lower bounds for n× n Boolean (i.e. AND-OR) matrix multiplication from T=Ω(n^2.5/S^0.5) to T=Ω(n^2.5/S^0.25) which has optimal exponents for the powerful query algorithms to which it applies. Our method also yields improved lower bounds for classical algorithms. 
    more » « less
  2. null (Ed.)
    We investigate sublinear classical and quantum algorithms for matrix games, a fundamental problem in optimization and machine learning, with provable guarantees. Given a matrix, sublinear algorithms for the matrix game were previously known only for two special cases: (1) the maximizing vectors live in the L1-norm unit ball, and (2) the minimizing vectors live in either the L1- or the L2-norm unit ball. We give a sublinear classical algorithm that can interpolate smoothly between these two cases: for any fixed q between 1 and 2, we solve, within some additive error, matrix games where the minimizing vectors are in an Lq-norm unit ball. We also provide a corresponding sublinear quantum algorithm that solves the same task with a quadratic improvement in dimensions of the maximizing and minimizing vectors. Both our classical and quantum algorithms are optimal in the dimension parameters up to poly-logarithmic factors. Finally, we propose sublinear classical and quantum algorithms for the approximate Carathéodory problem and the Lq-margin support vector machines as applications. 
    more » « less
  3. One fundamental question in database theory is the following: Given a Boolean conjunctive queryQ, what is the best complexity for computing the answer to Q in terms of the input database sizeN? When restricted to the class of combinatorial algorithms, it is known that the best known complexity for any queryQis captured by thesubmodular widthofQ. However, beyond combinatorial algorithms, certain queries are known to admit faster algorithms that often involve a clever combination of fast matrix multiplication and data partitioning. Nevertheless, there is no systematic way to derive and analyze the complexity of such algorithms for arbitrary queriesQ. In this work, we introduce a general framework that captures the best complexity for answering any Boolean conjunctive queryQusing matrix multiplication. Our framework unifies both combinatorial and non-combinatorial techniques under the umbrella of information theory. It generalizes the notion of submodular width to a new stronger notion called the ω-submodular widththat naturally incorporates the power of fast matrix multiplication. We describe a matching algorithm that computes the answer to any queryQin time corresponding to the ω-submodularwidth ofQ. We show that our framework recovers the best known complexities for Boolean queries that have been studied in the literature, to the best of our knowledge, and also discovers new algorithms for some classes of queries that improve upon the best known complexities. 
    more » « less
  4. Abstract Can one recover a matrix efficiently from only matrix‐vector products? If so, how many are needed? This article describes algorithms to recover matrices with known structures, such as tridiagonal, Toeplitz, Toeplitz‐like, and hierarchical low‐rank, from matrix‐vector products. In particular, we derive a randomized algorithm for recovering an unknown hierarchical low‐rank matrix from only matrix‐vector products with high probability, where is the rank of the off‐diagonal blocks, and is a small oversampling parameter. We do this by carefully constructing randomized input vectors for our matrix‐vector products that exploit the hierarchical structure of the matrix. While existing algorithms for hierarchical matrix recovery use a recursive “peeling” procedure based on elimination, our approach uses a recursive projection procedure. 
    more » « less
  5. Gørtz, Inge Li; Farach-Colton, Martin; Puglisi, Simon J; Herman, Grzegorz (Ed.)
    We give the first almost-linear time algorithm for computing the maximal k-edge-connected subgraphs of an undirected unweighted graph for any constant k. More specifically, given an n-vertex m-edge graph G = (V,E) and a number k = log^o(1) n, we can deterministically compute in O(m+n^{1+o(1)}) time the unique vertex partition {V_1,… ,V_z} such that, for every i, V_i induces a k-edge-connected subgraph while every superset V'_i ⊃ V_{i} does not. Previous algorithms with linear time work only when k ≤ 2 [Tarjan SICOMP'72], otherwise they all require Ω(m+n√n) time even when k = 3 [Chechik et al. SODA'17; Forster et al. SODA'20]. Our algorithm also extends to the decremental graph setting; we can deterministically maintain the maximal k-edge-connected subgraphs of a graph undergoing edge deletions in m^{1+o(1)} total update time. Our key idea is a reduction to the dynamic algorithm supporting pairwise k-edge-connectivity queries [Jin and Sun FOCS'20]. 
    more » « less