skip to main content


Title: LeafNATS: An Open-Source Toolkit and Live Demo System for Neural Abstractive Text Summarization
Neural abstractive text summarization (NATS) has received a lot of attention in the past few years from both industry and academia. In this paper, we introduce an open-source toolkit, namely LeafNATS, for training and evaluation of different sequence-to-sequence based models for the NATS task, and for deploying the pre-trained models to real-world applications. The toolkit is modularized and extensible in addition to maintaining competitive performance in the NATS task. A live news blogging system has also been implemented to demonstrate how these models can aid blog/news editors by providing them suggestions of headlines and summaries of their articles.  more » « less
Award ID(s):
1838730 1707498 1619028
NSF-PAR ID:
10142117
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)
Page Range / eLocation ID:
66 to 71
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Effectively modeling and predicting the information cascades is at the core of understanding the information diffusion, which is essential for many related downstream applications, such as fake news detection and viral marketing identification. Conventional methods for cascade prediction heavily depend on the hypothesis of diffusion models and hand-crafted features. Owing to the significant recent successes of deep learning in multiple domains, attempts have been made to predict cascades by developing neural networks based approaches. However, the existing models are not capable of capturing both the underlying structure of a cascade graph and the node sequence in the diffusion process which, in turn, results in unsatisfactory prediction performance. In this paper, we propose a deep multi-task learning framework with a novel design of shared-representation layer to aid in explicitly understanding and predicting the cascades. As it turns out, the learned latent representation from the shared-representation layer can encode the structure and the node sequence of the cascade very well. Our experiments conducted on real-world datasets demonstrate that our method can significantly improve the prediction accuracy and reduce the computational cost compared to state-of-the-art baselines. 
    more » « less
  2. Feldman, Anna ; Da San Martino, Giovanni ; Leberknight, Chris ; Nakov, Preslav (Ed.)
    The explosion of online health news articles runs the risk of the proliferation of low-quality information. Within the existing work on fact-checking, however, relatively little attention has been paid to medical news. We present a health news classification task to determine whether medical news articles satisfy a set of review criteria deemed important by medical experts and health care journalists. We present a dataset of 1,119 health news paired with systematic reviews. The review criteria consist of six elements that are essential to the accuracy of medical news. We then present experiments comparing the classical token-based approach with the more recent transformer-based models. Our results show that detecting qualitative lapses is a challenging task with direct ramifications in misinformation, but is an important direction to pursue beyond assigning True or False labels to short claims. 
    more » « less
  3. A growing swath of NLP research is tackling problems related to generating long text, including tasks such as open-ended story generation, summarization, dialogue, and more. However, we currently lack appropriate tools to evaluate these long outputs of generation models: classic automatic metrics such as ROUGE have been shown to perform poorly, and newer learned metrics do not necessarily work well for all tasks and domains of text. Human rating and error analysis remains a crucial component for any evaluation of long text generation. In this paper, we introduce FALTE, a web-based annotation toolkit designed to address this shortcoming. Our tool allows researchers to collect fine-grained judgments of text quality from crowdworkers using an error taxonomy specific to the downstream task. Using the task interface, annotators can select and assign error labels to text span selections in an incremental paragraph-level annotation workflow. The latter functionality is designed to simplify the document-level task into smaller units and reduce cognitive load on the annotators. Our tool has previously been used to run a large-scale annotation study that evaluates the coherence of long generated summaries, demonstrating its utility. 
    more » « less
  4. Analyzing ideology and polarization is of critical importance in advancing our grasp of modern politics. Recent research has made great strides towards understanding the ideological bias (i.e., stance) of news media along the left-right spectrum. In this work, we instead take a novel and more nuanced approach for the study of ideology based on its left or right positions on the issue being discussed. Aligned with the theoretical accounts in political science, we treat ideology as a multi-dimensional construct, and introduce the first diachronic dataset of news articles whose ideological positions are annotated by trained political scientists and linguists at the paragraph level. We showcase that, by controlling for the author{'}s stance, our method allows for the quantitative and temporal measurement and analysis of polarization as a multidimensional ideological distance. We further present baseline models for ideology prediction, outlining a challenging task distinct from stance detection. 
    more » « less
  5. Agent-based modeling (ABM) has many applications in the social sciences, biology, computer science, and robotics. One of the most important and challenging phases in agent-based model development is the calibration of model parameters and agent behaviors. Unfortunately, for many models this step is done by hand in an ad-hoc manner or is ignored entirely, due to the complexity inherent in ABM dynamics. In this paper we present a general-purpose, automated optimization system to assist the model developer in the calibration of ABM parameters and agent behaviors. This system combines two popular tools: the MASON agent-based modeling toolkit and the ECJ evolutionary optimization library. Our system distributes the model calibration task over very many processors and provides a wide range of stochastic optimization algorithms well suited to the calibration needs of agent-based models. 
    more » « less