skip to main content


Search for: All records

Award ID contains: 1707498

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In recent times, sequence-to-sequence (seq2seq) models have gained a lot of popularity and provide stateof-the-art performance in a wide variety of tasks, such as machine translation, headline generation, text summarization, speech-to-text conversion, and image caption generation. The underlying framework for all these models is usually a deep neural network comprising an encoder and a decoder. Although simple encoder–decoder models produce competitive results, many researchers have proposed additional improvements over these seq2seq models, e.g., using an attention-based model over the input, pointer-generation models, and self-attention models. However, such seq2seq models suffer from two common problems: 1) exposure bias and 2) inconsistency between train/test measurement. Recently, a completely novel point of view has emerged in addressing these two problems in seq2seq models, leveraging methods from reinforcement learning (RL). In this survey, we consider seq2seq problems from the RL point of view and provide a formulation combining the power of RL methods in decision-making with seq2seq models that enable remembering long-term memories. We present some of the most recent frameworks that combine the concepts from RL and deep neural networks. Our work aims to provide insights into some of the problems that inherently arise with current approaches and how we can address them with better RL models. We also provide the source code for implementing most of the RL models discussed in this paper to support the complex task of abstractive text summarization and provide some targeted experiments for these RL models, both in terms of performance and training time. 
    more » « less
  2. Searching for documents with semantically similar content is a fundamental problem in the information retrieval domain with various challenges, primarily, in terms of efficiency and effectiveness. Despite the promise of modeling structured dependencies in documents, several existing text hashing methods lack an efficient mechanism to incorporate such vital information. Additionally, the desired characteristics of an ideal hash function, such as robustness to noise, low quantization error and bit balance/uncorrelation, are not effectively learned with existing methods. This is because of the requirement to either tune additional hyper-parameters or optimize these heuristically and explicitly constructed cost functions. In this paper, we propose a Denoising Adversarial Binary Autoencoder (DABA) model which presents a novel representation learning framework that captures structured representation of text documents in the learned hash function. Also, adversarial training provides an alternative direction to implicitly learn a hash function that captures all the desired characteristics of an ideal hash function. Essentially, DABA adopts a novel single-optimization adversarial training procedure that minimizes the Wasserstein distance in its primal domain to regularize the encoder’s output of either a recurrent neural network or a convolutional autoencoder.We empirically demonstrate the effectiveness of our proposed method in capturing the intrinsic semantic manifold of the related documents. The proposed method outperforms the current state-of-the-art shallow and deep unsupervised hashing methods for the document retrieval task on several prominent document collections. 
    more » « less
  3. Electronic medical records (EMR) contain comprehensive patient information and are typically stored in a relational database with multiple tables. Effective and efficient patient information retrieval from EMR data is a challenging task for medical experts. Question-to-SQL generation methods tackle this problem by first predicting the SQL query for a given question about a database, and then, executing the query on the database. However, most of the existing approaches have not been adapted to the healthcare domain due to a lack of healthcare Question-to-SQL dataset for learning models specific to this domain. In addition, wide use of the abbreviation of terminologies and possible typos in questions introduce additional challenges for accurately generating the corresponding SQL queries. In this paper, we tackle these challenges by developing a deep learning based TRanslate-Edit Model for Question-to-SQL (TREQS) generation, which adapts the widely used sequence-to-sequence model to directly generate the SQL query for a given question, and further performs the required edits using an attentive-copying mechanism and task-specific look-up tables. Based on the widely used publicly available electronic medical database, we create a new large-scale Question-SQL pair dataset, named MIMICSQL, in order to perform the Question-to-SQL generation task in healthcare domain. An extensive set of experiments are conducted to evaluate the performance of our proposed model on MIMICSQL. Both quantitative and qualitative experimental results indicate the flexibility and efficiency of our proposed method in predicting condition values and its robustness to random questions with abbreviations and typos. 
    more » « less
  4. Survival analysis aims at predicting time to event of interest along with its probability on longitudinal data. It is commonly used to make predictions for a single specific event of interest at a given time point. However, predicting the occurrence of multiple events simultaneously and dynamically is needed in many applications. An intuitive way to solve this problem is to simply apply the regular survival analysis method independently to each task at each time point. However, it often leads to a suboptimal solution since the underlying dependencies between tasks are ignored, which motivates us to analyze these tasks jointly to select common features shared across all tasks. In this paper, we formulate a temporal Multi-Task learning framework (MTMT) using tensor representation. More specifically, given a survival dataset and a sequence of time points, which are considered as the monitored time points, we model each task at each time point as a regular survival analysis problem and optimize them simultaneously. We demonstrate the performance of MTMT model on two real-world datasets. We show the superior performance of the MTMT model compared to several state-of-the-art models. We also provide the list of important features selected to demonstrate the interpretability of our model. 
    more » « less
  5. In the era of big data, online doctor review platforms, which enable patients to give feedback to their doctors, have become one of the most important components in healthcare systems. On one hand, they help patients to choose their doctors based on the experience of others. On the other hand, they help doctors to improve the quality of their service. Moreover, they provide important sources for us to discover common concerns of patients and existing problems in clinics, which potentially improve current healthcare systems. In this paper, we systematically investigate the dataset from one of such review platform, namely, ratemds.com, where each review for a doctor comes with an overall rating and ratings of four different aspects. A comprehensive statistical analysis is conducted first for reviews, ratings, and doctors. Then, we explore the content of reviews by extracting latent topics related to different aspects with unsupervised topic modeling techniques. As the core component of this paper, we propose a multi-task learning framework for the document-level multi-aspect sentiment classification. This task helps us to not only recover missing aspect-level ratings and detect inconsistent rating scores but also identify aspect-keywords for a given review based on ratings. The proposed model takes both features of doctors and aspect-keywords into consideration. Extensive experiments have been conducted on two subsets of ratemds dataset to demonstrate the effectiveness of the proposed model. 
    more » « less
  6. Neural abstractive text summarization (NATS) has received a lot of attention in the past few years from both industry and academia. In this paper, we introduce an open-source toolkit, namely LeafNATS, for training and evaluation of different sequence-to-sequence based models for the NATS task, and for deploying the pre-trained models to real-world applications. The toolkit is modularized and extensible in addition to maintaining competitive performance in the NATS task. A live news blogging system has also been implemented to demonstrate how these models can aid blog/news editors by providing them suggestions of headlines and summaries of their articles. 
    more » « less
  7. The growth of the Web in recent years has resulted in the development of various online platforms that provide healthcare information services. These platforms contain an enormous amount of information, which could be beneficial for a large number of people. However, navigating through such knowledgebases to answer specific queries of healthcare consumers is a challenging task. A majority of such queries might be non-factoid in nature, and hence, traditional keyword-based retrieval models do not work well for such cases. Furthermore, in many scenarios, it might be desirable to get a short answer that sufficiently answers the query, instead of a long document with only a small amount of useful information. In this paper, we propose a neural network model for ranking documents for question answering in the healthcare domain. The proposed model uses a deep attention mechanism at word, sentence, and document levels, for efficient retrieval for both factoid and non-factoid queries, on documents of varied lengths. Specifically, the word-level cross-attention allows the model to identify words that might be most relevant for a query, and the hierarchical attention at sentence and document levels allows it to do effective retrieval on both long and short documents. We also construct a new large-scale healthcare question-answering dataset, which we use to evaluate our model. Experimental evaluation results against several state-of-the-art baselines show that our model outperforms the existing retrieval techniques. 
    more » « less
  8. Deep neural networks are data hungry models and thus face difficulties when attempting to train on small text datasets. Transfer learning is a potential solution but their effectiveness in the text domain is not as explored as in areas such as image analysis. In this paper, we study the problem of transfer learning for text summarization and discuss why existing state-of-the-art models fail to generalize well on other (unseen) datasets. We propose a reinforcement learning framework based on a self-critic policy gradient approach which achieves good generalization and state-ofthe-art results on a variety of datasets. Through an extensive set of experiments, we also show the ability of our proposed framework to fine-tune the text summarization model using only a few training samples. To the best of our knowledge, this is the first work that studies transfer learning in text summarization and provides a generic solution that works well on unseen data 
    more » « less
  9. The proliferation of Internet-enabled smartphones has ushered in an era where events are reported on social media websites such as Twitter and Facebook. However, the short text nature of social media posts, combined with a large volume of noise present in such datasets makes event detection challenging. This problem can be alleviated by using other sources of information, such as news articles, that employ a precise and factual vocabulary, and are more descriptive in nature. In this paper, we propose Spatio-Temporal Event Detection (STED), a probabilistic model to discover events, their associated topics, time of occurrence, and the geospatial distribution from multiple data sources, such as news and Twitter. The joint modeling of news and Twitter enables our model to distinguish events from other noisy topics present in Twitter data. Furthermore, the presence of geocoordinates and timestamps in tweets helps find the spatio-temporal distribution of the events. We evaluate our model on a large corpus of Twitter and news data, and our experimental results show that STED can effectively discover events, and outperforms state-of-the-art techniques. 
    more » « less