- NSF-PAR ID:
- 10142427
- Date Published:
- Journal Name:
- Polymer Chemistry
- ISSN:
- 1759-9954
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Thermoset networks are chemically cross-linked materials that exhibit high heat resistance and mechanical strength; however, the permanently cross-linked system makes end-of-life degradation difficult. Thermosets that are inherently degradable and made from renewably derived starting materials are an underexplored area in sustainable polymer chemistry. Here, we report the synthesis of novel sugar- and terpene-based monomers as the enes in thiol–ene network formation. The resulting networks showed varied mechanical properties depending on the thiol used during cross-linking, ranging from strain-at-breaks of 12 to 200%. Networks with carveol or an isosorbide-based thiol incorporated showed plastic deformation under tensile stress testing, while geraniol-containing networks demonstrated linear stress–strain behavior. The storage modulus at the rubbery plateau was highly dependent on the thiol cross-linker, showing an order of magnitude difference between commercial PETMP, DTT, and synthesized Iso2MC. Thermal degradation temperatures were low for the networks, primarily below 200 °C, and the Tg values ranged from −17 to 31 °C. Networks were rapidly degraded under basic conditions, showing complete degradation after 2 days for nearly all synthesized thermosets. This library demonstrates the range of thermal and mechanical properties that can be targeted using monomers from sugars and terpenes and expands the field of renewably derived and degradable thermoset network materials.more » « less
-
Structural effects on the reprocessability and stress relaxation of crosslinked polyhydroxyurethanes
ABSTRACT Crosslinked polyhydroxyurethane (PHU) networks synthesized from difunctional six‐membered cyclic carbonates and triamines are reprocessable at elevated temperatures through transcarbamoylation reactions. Here we study the structural effects on reprocessability and stress relaxation in crosslinked PHUs. Crosslinked PHUs derived from
bis (five‐membered cyclic carbonates) are shown to decompose at temperatures needed for reprocessing, likely via initial reversion of the PHU linkage and subsequent side reactions of the liberated amine and cyclic carbonate. Therefore, several six‐membered cyclic carbonate‐based PHUs with varying polymer backbones and crosslink densities were synthesized. These networks show large differences in the Arrhenius activation energy of stress relaxation (from 99 to 136 kJ/mol) that depend on the network structure, suggesting that transcarbamoylation reactions may be highly affected by both chemical and mechanical effects. Furthermore, all crosslinked PHUs derived from six‐membered cyclic carbonates show mechanical properties typical of thermoset polymers, but recovered as much as 80% of their as‐synthesized tensile properties after elevated temperature compression molding. These studies provide significant insight into factors affecting the reprocessability of PHUs and inform design criteria for the future synthesis of sustainable and repairable crosslinked PHUs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2017 ,134 , 44984. -
Upcycling plastic waste into reprocessable materials with performance-advantaged properties would contribute to the development of a circular plastics economy. Here, we modify branched polyolefins and postconsumer polyethylene through a versatile C−H functionalization approach using thiosulfonates as a privileged radical group transfer functionality. Cross-linking the functionalized polyolefins with polytopic amines provided dynamically cross-linked polyolefin networks enabled by associative bond exchange of diketoenamine functionality. A combination of resonant soft X-ray scattering and grazing incidence X-ray scattering revealed hierarchical phase morphology in which diketoenamine-rich microdomains phase-separate within amorphous regions between polyolefin crystallites. The combination of dynamic covalent cross-links and microphase separation results in useful and improved mechanical properties, including a ∼4.5-fold increase in toughness, a reduction in creep deformation at temperatures relevant to use, and high-temperature structural stability compared to the parent polyolefin. The dynamic nature of diketoenamine cross-links provides stress relaxation at elevated temperatures, which enabled iterative reprocessing of the dynamic covalent polymer network with little cycle-to-cycle property fade. The ability to convert polyolefin waste into a reprocessable thermoformable material with attractive thermomechanical properties provides additional optionality for upcycling to enable future circularity.more » « less
-
One method to improve the properties of covalent adaptable networks (CANs) is to reinforce them with a fraction of permanent cross‐links without sacrificing their (re)processability. Here, a simple method to synthesize poly(more » « less
n ‐hexyl methacrylate) (PHMA) and poly(n ‐lauryl methacrylate) (PLMA) networks containing static dialkyl disulfide cross‐links (utilizing bis(2‐methacryloyl)oxyethyl disulfide, or DSDMA, as a permanent cross‐linker) and dynamic dialkylamino sulfur‐sulfur cross‐links (utilizing BiTEMPS methacrylate as a dissociative dynamic covalent cross‐linker) is presented. The robustness and (re)processability of the CANs are demonstrated, including the full recovery of cross‐link density after recycling. The authors also investigate the effect of static cross‐link content on the stress relaxation responses of the CANs with and without percolated, static cross‐links. As PHMA and PLMA have very different activation energies of their respective cooperative segmental mobilities, it is shown that the dissociative CANs without percolated, static cross‐links have activation energies of stress relaxation that are dominated by the dissociation of BiTEMPS methacrylate cross‐links rather than by the cooperative relaxations of backbone segments, i.e., the alpha relaxation. In CANs with percolated, static cross‐links, the segmental relaxation of side chains, i.e., the beta relaxation, is critical in allowing for large‐scale stress relaxation and governs their activation energies of stress relaxation. -
Abstract The remarkable elasticity and tensile strength found in natural elastomers are challenging to mimic. Synthetic elastomers typically feature covalently cross‐linked networks (rubbers), but this hinders their reprocessability. Physical cross‐linking via hydrogen bonding or ordered crystallite domains can afford reprocessable elastomers, but often at the cost of performance. Herein, we report the synthesis of ultra‐tough, reprocessable elastomers based on linear alternating polymers. The incorporation of a rigid isohexide adjacent to urethane moieties affords elastomers with exceptional strain hardening, strain rate dependent behavior, and high optical clarity. Distinct differences were observed between isomannide and isosorbide‐based elastomers where the latter displays superior tensile strength and strain recovery. These phenomena are attributed to the regiochemical irregularities in the polymers arising from their distinct stereochemistry and respective inter‐chain hydrogen bonding.