skip to main content

Title: Mechanically robust and reprocessable imine exchange networks from modular polyester pre-polymers
Covalent adaptable networks (CANs) containing reversible cross-links impart recyclability to thermoset materials without sacrificing their desirable properties ( e.g. high tensile strength and solvent resistance). In addition to thermal recycling, the sustainability of these materials may be further improved by incorporating bio-sourced monomers or by enabling alternate end-of-life fates, such as biodegradation or recovery of starting materials. The alternating ring-opening copolymerisation of epoxides and cyclic anhydrides permits the modular synthesis of polyester pre-polymers that can then be cross-linked to form dynamic imine-linked networks. We report the synthesis and characterisation of five imine exchange polyester CANs with varied cross-linking densities and pre-polymer architectures. While the materials exhibit characteristic thermoset properties at service temperatures, differences in pre-polymer architecture produce distinct dynamic mechanical effects at elevated temperatures. The networks may be thermally reprocessed with full recovery of their tensile strengths and cross-linking densities, dissociated to pre-polymer, or hydrolytically degraded.
Authors:
; ; ; ; ;
Award ID(s):
1901635 1719875
Publication Date:
NSF-PAR ID:
10142427
Journal Name:
Polymer Chemistry
ISSN:
1759-9954
Sponsoring Org:
National Science Foundation
More Like this
  1. Recycling of polyurethanes is largely infeasible due to the harsh reprocessing conditions and associated risks of side reactions and degradation whereas polymer networks incorporating dynamic covalent bonds represent an attractive approach to the design of recyclable materials. Here, we report findings on the dynamic nature of thiourethanes, and their application as a new class of recyclable analogs of urethane materials. A series of small molecule experiments was initially conducted to determine the equilibrium constant and exchange reaction kinetic constant for the thiol–isocyanate reaction. Furthermore, incorporating those thiourethane moieties into a cross-linked network resulted in thermoset materials that are readily depolymerized to liquid oligomers. The resultant oligomers can be re-crosslinked to thiourethanes without any loss of performance nor change in mechanical properties (peak stress of 25 MPa with max strain of 200%). Moreover, the recycled thiol oligomers from thiourethane network polymers could potentially be transformed into other materials with mechanical properties that exceed those of the initial, pristine thiourethane materials. Overall, the ease with which these polythiourethanes are polymerized, recycled and reformulated gives a new direction and hope in the design of sustainable polymers.
  2. Abstract

    Natural processes continuously degrade a material’s performance throughout its life cycle. An emerging class of synthetic self-healing polymers and composites possess property-retaining functions with the promise of longer lifetimes. But sustained in-service repair of structural fiber-reinforced composites remains unfulfilled due to material heterogeneity and thermodynamic barriers in commonly cross-linked polymer-matrix constituents. Overcoming these inherent challenges for mechanical self-recovery is vital to extend in-service operation and attain widespread adoption of such bioinspired structural materials. Here we transcend existing obstacles and report a fiber-composite capable of minute-scale and prolonged in situ healing — 100 cycles: an order of magnitude higher than prior studies. By 3D printing a mendable thermoplastic onto woven glass/carbon fiber reinforcement and co-laminating with electrically resistive heater interlayers, we achieve in situ thermal remending of internal delamination via dynamic bond re-association. Full fracture recovery occurs below the glass-transition temperature of the thermoset epoxy-matrix composite, thus preserving stiffness during and after repair. A discovery of chemically driven improvement in thermal remending of glass- over carbon-fiber composites is also revealed. The marked lifetime extension offered by this self-healing strategy mitigates costly maintenance, facilitates repair of difficult-to-access structures (e.g., wind-turbine blades), and reduces part replacement, thereby benefiting economy and environment.

  3. Engineering applications of current thermoset shape memory polymers are limited by three critical issues: demanding fabrication conditions (from 70 to 300 °C temperatures for hours or days), lack of reprocessability or recyclability, and low recovery stress and energy output. To address these problems simultaneously, a new UV curable and vitrimer-based epoxy thermoset shape memory polymer (VSMP) has been synthesized. A 1.1 mm thick VSMP film can be readily cured at room temperature under UV-irradiation (61 mW cm −2 ) in just 80 s. It possesses 36.7 MPa tensile strength, 230 MPa compressive strength, and 3120 MPa modulus at room temperature. It still has a compressive strength of 187 MPa at 120 °C. The covalent adaptable network (CAN) imparts the VSMP with recyclability, as reflected by two effective recycling cycles (>60% recycling efficiency). In addition, the VSMP exhibits good shape memory properties for multiple shape recovery cycles. With 20% compression programming strain, up to 13.4 MPa stable recovery stress and 1.05 MJ m −3 energy output in the rubbery state are achieved. With good mechanical strength, thermal stability, recyclability, and excellent shape memory properties combined with in situ UV-curing capabilities, the new VSMP is a promising multifunctional thermoset for engineering applications.
  4. Efficiently manipulating and reproducing collagen (COL) alignment in vitro remains challenging because many of the fundamental mechanisms underlying and guiding the alignment process are not known. We reconcile experiments and coarse-grained molecular dynamics simulations to investigate the mechanical behaviors of a growing COL scaffold and assay how changes in fiber alignment and various cross-linking densities impact their alignment dynamics under shear flow. We find higher cross-link densities and alignment levels significantly enhance the apparent tensile/shear moduli and strength of a bulk COL system, suggesting potential measures to facilitate the design of stronger COL based materials. Since fibril alignment plays a key factor in scaffold mechanics, we next investigate the molecular mechanism behind fibril alignment with Couette flow by computationally investigating the effects of COL's structural properties such as chain lengths, number of chains, tethering conditions, and initial COL conformations on the COL's final alignment level. Our computations suggest that longer chain lengths, more chains, greater amounts of tethering, and initial anisotropic COL conformations benefit the final alignment, but the effect of chain lengths may be more dominant over other factors. These results provide important parameters for consideration in manufacturing COL-based scaffolds where alignment and cross-linking are necessary for regulating performance.
  5. Recent progress on stretchable, tough dual-dynamic polymer single networks (SN) and interpenetrated networks (IPN) has broadened the potential applications of dynamic polymers. However, the impact of macromolecular structure on the material mechanics remains poorly understood. Here, rapidly exchanging hydrogen bonds and thermoresponsive Diels–Alder bonds were included into molecularly engineered interpenetrated network materials. RAFT polymerization was used to make well-defined polymers with control over macromolecular architecture. The IPN materials were assessed by gel permeation chromatography, differential scanning calorimetry, tensile testing and rheology. The mechanical properties of these IPN materials can be tuned by varying the crosslinker content and chain length. All materials are elastic and have dynamic behavior at both ambient temperature and elevated temperature (90 °C), owing to the presence of the dual dynamic noncovalent and covalent bonds. 100% self-healing recovery was achieved and a maximum stress level of up to 6 MPa was obtained. The data suggested the material's healing properties are inversely proportional to the content of the crosslinker or the degree of polymerization at both room and elevated temperature. The thermoresponsive crosslinker restricted deformation to some extent in an ambient environment but gave excellent malleability upon heating. The underlying mechanism was explored by the computational simulations. Furthermore,more »a single network material with the same crosslinker content and degree of polymerization as the IPN was made. The SN was substantially weaker than the comparable IPN material.« less