Summary Plant secondary growth drives stem thickening and biomass accumulation, but its regulation is not yet fully understood.We have identified a novel semi‐dominant mutant,rbe‐d, characterized by a significant reduction in cambium cells and a complete absence of secondary growth in interfascicular regions in the stem. Gene cloning experiments indicated that the activation of the C2H2 zinc finger transcription factor, AT5G06070/RABBIT EARS (RBE), is responsible for therbe‐dphenotype.Transgenic analysis confirmed that overexpression of RBE represses secondary growth, while therbe‐2mutant increased the width of the interfascicular cambium‐derived (ICD) region. TheRBEgene is expressed in the procambium and cambium regions. Transcriptomic analysis showed that genes of the tracheary element differentiation inhibitory factor‐phloem intercalated with xylem (TDIF‐PXY) central regulatory pathway are repressed in therbe‐dmutant plants. Biochemical analyses confirmed that RBE binds directly to the promoter of WUSCHEL‐related homeobox (WOX4), a TDIF‐PXY downstreamWOXgene that regulates cambium cell proliferation. Moreover, genetic analysis confirmed thatWOX4is epistatic toRBEin secondary growth.Our results indicate that RBE inhibits cambium proliferation and thereby impacts secondary growth by directly repressingWOX4. These findings offer valuable new insight into the regulation of secondary growth in the Arabidopsis stem.
more »
« less
Water lily ( Nymphaea thermarum ) genome reveals variable genomic signatures of ancient vascular cambium losses
For more than 225 million y, all seed plants were woody trees, shrubs, or vines. Shortly after the origin of angiosperms ∼140 million y ago (MYA), the Nymphaeales (water lilies) became one of the first lineages to deviate from their ancestral, woody habit by losing the vascular cambium, the meristematic population of cells that produces secondary xylem (wood) and phloem. Many of the genes and gene families that regulate differentiation of secondary tissues also regulate the differentiation of primary xylem and phloem, which are produced by apical meristems and retained in nearly all seed plants. Here, we sequenced and assembled a draft genome of the water lilyNymphaea thermarum, an emerging system for the study of early flowering plant evolution, and compared it to genomes from other cambium-bearing and cambium-less lineages (e.g., monocots andNelumbo). This revealed lineage-specific patterns of gene loss and divergence.Nymphaeais characterized by a significant contraction of the HD-ZIP III transcription factors, specifically loss ofREVOLUTA, which influences cambial activity in other angiosperms. We also found theNymphaeaand monocot copies of cambium-associated CLE signaling peptides display unique substitutions at otherwise highly conserved amino acids.Nelumbodisplays no obvious divergence in cambium-associated genes. The divergent genomic signatures of convergent loss of vascular cambium reveals that even pleiotropic genes can exhibit unique divergence patterns in association with independent events of trait loss. Our results shed light on the evolution of herbaceousness—one of the key biological innovations associated with the earliest phases of angiosperm evolution.
more »
« less
- Award ID(s):
- 1812116
- PAR ID:
- 10142453
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 117
- Issue:
- 15
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- p. 8649-8656
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Injury to the xylem and vascular cambium is proposed to explain mortality following low severity fires. These tissues have been assessed independently, but the relative significance of the xylem and cambium is still uncertain. The goal of this study is to evaluate the xylem dysfunction hypothesis and cambium necrosis hypothesis simultaneously. The hot dry conditions of a low severity fire were simulated in a drying oven, exposing Sequoia sempervirens (Lamb. ex D. Don) shoots to 70 and 100 °C for 6–60 min. Cambial viability was measured with Neutral Red stain and water transport capacity was assessed by calculating the loss of hydraulic conductivity. Vulnerability curves were also constructed to determine susceptibility to drought-induced embolism following heat exposure. The vascular cambium died completely at 100 °C after only 6 min of heat exposure, while cells remained viable at 70 °C temperatures for up to 15 min. Sixty minutes of exposure to 70 °C reduced stem hydraulic conductivity by 40%, while 45 min at 100 °C caused complete loss of conductivity. The heat treatments dropped hydraulic conductivity irrecoverably but did not significantly impact post-fire vulnerability to embolism. Overall, the damaging effects of high temperature occurred more rapidly in the vascular cambium than xylem following heat exposure. Importantly, the xylem remained functional until the most extreme treatments, long after the vascular cambium had died. Our results suggest that the viability of the vascular cambium may be more critical to post-fire survival than xylem function in S. sempervirens. Given the complexity of fire, we recommend ground-truthing the cambial and xylem post-fire response on a diverse range of species.more » « less
-
Purugganan, Michael (Ed.)Abstract The field of evolutionary developmental biology can help address how morphological novelties evolve, a key question in evolutionary biology. In Arabidopsis thaliana, APETALA2 (AP2) plays a role in the development of key plant innovations including seeds, flowers, and fruits. AP2 belongs to the AP2/ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR family which has members in all viridiplantae, making it one of the oldest and most diverse gene lineages. One key subclade, present across vascular plants is the euAPETALA2 (euAP2) clade, whose founding member is AP2. We reconstructed the evolution of the euAP2 gene lineage in vascular plants to better understand its impact on the morphological evolution of plants, identifying seven major duplication events. We also performed spatiotemporal expression analyses of euAP2/TOE3 genes focusing on less explored vascular plant lineages, including ferns, gymnosperms, early diverging angiosperms and early diverging eudicots. Altogether, our data suggest that euAP2 genes originally contributed to spore and sporangium development, and were subsequently recruited to ovule, fruit and floral organ development. Finally, euAP2 protein sequences are highly conserved; therefore, changes in the role of euAP2 homologs during development are most likely due to changes in regulatory regions.more » « less
-
Abstract Sulfate-proton co-transporters (SULTRs) mediate sulfate uptake, transport, storage and assimilation in plants. The SULTR family has historically been classified into four groups (SULTR1–SULTR4), with well-characterized roles for SULTR groups 1, 2 and 4. However, the functions of the large and diverse SULTR3 group remain poorly understood. Here, we present an updated phylogenetic analysis of SULTRs across angiosperms, including multiple early-divergent lineages. Our results suggest that the enigmatic SULTR3 group comprises four distinct subfamilies that predate the emergence of angiosperms, providing a basis for reclassifying the SULTR family into seven subfamilies. This expanded classification is supported by subfamily-specific gene structures and amino acid substitutions in the substrate-binding pocket. Structural modeling identified three serine residues uniquely lining the substrate-binding pocket of SULTR3.4, enabling three hydrogen bonds with the phosphate ion. The data support the proposed neofunctionalization of this subfamily for phosphate allocation within vascular tissues. Transcriptome analysis of Populus tremula × Populus alba revealed divergent tissue expression preferences among SULTR subfamilies and between genome duplicates. We observed partitioned expression in vascular tissues among the four SULTR3 subfamilies, with PtaSULTR3.4a and PtaSULTR3.2a preferentially expressed in primary and secondary xylem, respectively. Gene coexpression analysis revealed coordinated expression of PtaSULTR3.4a with genes involved in phosphate starvation responses and nutrient transport, consistent with a potential role in phosphate homeostasis. In contrast, PtaSULTR3.2a was strongly coexpressed with lignification and one-carbon metabolism genes and their upstream transcription regulators. PtaSULTR3.2a belongs to a eudicot-specific branch of the SULTR3.1 subfamily found only in perennial species, suggesting a specialized role in lignifying tissues. Together, our findings provide a refined phylogenetic framework for the SULTR family and suggest that the expanded SULTR3 subfamilies have undergone neofunctionalization during the evolution of vascular and perennial plants.more » « less
-
Transcriptional divergence of duplicated genes after whole genome duplication (WGD) has been described in many plant lineages and is often associated with subgenome dominance, a genome-wide mechanism. However, it is unknown what underlies the transcriptional divergence of duplicated genes in polyploid species that lack subgenome dominance. Soybean is a paleotetraploid with a WGD that occurred 5 to 13 Mya. Approximately 50% of the duplicated genes retained from this WGD exhibit transcriptional divergence. We developed accessible chromatin region (ACR) datasets from leaf, flower, and seed tissues using MNase-hypersensitivity sequencing. We validated enhancer function of several ACRs associated with known genes using CRISPR/Cas9-mediated genome editing. The ACR datasets were used to examine and correlate the transcriptional patterns of 17,111 pairs of duplicated genes in different tissues. We demonstrate that ACR dynamics are correlated with divergence of both expression level and tissue specificity of individual gene pairs. Gain or loss of flanking ACRs and mutation ofcis-regulatory elements (CREs) within the ACRs can change the balance of the expression level and/or tissue specificity of the duplicated genes. Analysis of DNA sequences associated with ACRs revealed that the extensive sequence rearrangement after the WGD reshaped the CRE landscape, which appears to play a key role in the transcriptional divergence of duplicated genes in soybean. This may represent a general mechanism for transcriptional divergence of duplicated genes in polyploids that lack subgenome dominance.more » « less
An official website of the United States government
