skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamics of cis -regulatory sequences and transcriptional divergence of duplicated genes in soybean
Transcriptional divergence of duplicated genes after whole genome duplication (WGD) has been described in many plant lineages and is often associated with subgenome dominance, a genome-wide mechanism. However, it is unknown what underlies the transcriptional divergence of duplicated genes in polyploid species that lack subgenome dominance. Soybean is a paleotetraploid with a WGD that occurred 5 to 13 Mya. Approximately 50% of the duplicated genes retained from this WGD exhibit transcriptional divergence. We developed accessible chromatin region (ACR) datasets from leaf, flower, and seed tissues using MNase-hypersensitivity sequencing. We validated enhancer function of several ACRs associated with known genes using CRISPR/Cas9-mediated genome editing. The ACR datasets were used to examine and correlate the transcriptional patterns of 17,111 pairs of duplicated genes in different tissues. We demonstrate that ACR dynamics are correlated with divergence of both expression level and tissue specificity of individual gene pairs. Gain or loss of flanking ACRs and mutation ofcis-regulatory elements (CREs) within the ACRs can change the balance of the expression level and/or tissue specificity of the duplicated genes. Analysis of DNA sequences associated with ACRs revealed that the extensive sequence rearrangement after the WGD reshaped the CRE landscape, which appears to play a key role in the transcriptional divergence of duplicated genes in soybean. This may represent a general mechanism for transcriptional divergence of duplicated genes in polyploids that lack subgenome dominance.  more » « less
Award ID(s):
2029959
PAR ID:
10478485
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
PNAS
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
44
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Purugganan, Michael (Ed.)
    Abstract Subgenome dominance after whole-genome duplication (WGD) has been observed in many plant species. However, the degree to which the chromatin environment affects this bias has not been explored. Here, we compared the dominant subgenome (maize1) and the recessive subgenome (maize2) with respect to patterns of sequence substitutions, genes expression, transposable element accumulation, small interfering RNAs, DNA methylation, histone modifications, and accessible chromatin regions (ACRs). Our data show that the degree of bias between subgenomes for all the measured variables does not vary significantly when both of the WGD genes are located in pericentromeric regions. Our data further indicate that the location of maize1 genes in chromosomal arms is pivotal for maize1 to maintain its dominance, but location has a less effect on maize2 homoeologs. In addition to homoeologous genes, we compared ACRs, which often harbor cis-regulatory elements, between the two subgenomes and demonstrate that maize1 ACRs have a higher level of chromatin accessibility, a lower level of sequence substitution, and are enriched in chromosomal arms. Furthermore, we find that a loss of maize1 ACRs near their nearby genes is associated with a reduction in purifying selection and expression of maize1 genes relative to their maize2 homoeologs. Taken together, our data suggest that chromatin environment and cis-regulatory elements are important determinants shaping the divergence and evolution of duplicated genes. 
    more » « less
  2. Abstract Subgenome dominance has been reported in diverse allopolyploid species, where genes from one subgenome are preferentially retained and are more highly expressed than those from other subgenome(s). However, the molecular mechanisms responsible for subgenome dominance remain poorly understood. Here, we develop genome-wide map of accessible chromatin regions (ACRs) in cultivated strawberry (2n = 8x = 56, with A, B, C, D subgenomes). Each ACR is identified as an MNase hypersensitive site (MHS). We discover that the dominant subgenome A contains a greater number of total MHSs and MHS per gene than the submissive B/C/D subgenomes. Subgenome A suffers fewer losses of MHS-related DNA sequences and fewer MHS fragmentations caused by insertions of transposable elements. We also discover that genes and MHSs related to stress response have been preferentially retained in subgenome A. We conclude that preservation of genes and their cognate ACRs, especially those related to stress responses, play a major role in the establishment of subgenome dominance in octoploid strawberry. 
    more » « less
  3. Abstract Alternative transcription initiation (ATI) appears to be a ubiquitous regulatory mechanism of gene expression in eukaryotes. However, the extent to which it affects the products of gene expression and how it evolves and is regulated remain unknown. Here, we report genome-wide identification and analysis of transcription start sites (TSSs) in various soybean (Glycine max) tissues using a survey of transcription initiation at promoter elements with high-throughput sequencing (STRIPE-seq). We defined 193,579 TSS clusters/regions (TSRs) in 37,911 annotated genes, with 56.5% located in canonical regulatory regions and 43.5% from start codons to 3′ untranslated regions, which were responsible for changes in open reading frames of 24,131 genes. Strikingly, 6,845 genes underwent ATI within coding sequences (CDSs). These CDS-TSRs were tissue-specific, did not have TATA-boxes typical of canonical promoters, and were embedded in nucleosome-free regions flanked by nucleosomes with enhanced levels of histone marks potentially associated with intragenic transcriptional initiation, suggesting that ATI within CDSs was epigenetically tuned and associated with tissue-specific functions. Overall, duplicated genes possessed more TSRs, exhibited lower degrees of tissue specificity, and underwent stronger purifying selection than singletons. This study highlights the significance of ATI and the genomic and epigenomic factors shaping the distribution of ATI in CDSs in a paleopolyploid eukaryote. 
    more » « less
  4. Bomblies, K (Ed.)
    Abstract Transposable elements (TEs) have the potential to create regulatory variation both through the disruption of existing DNA regulatory elements and through the creation of novel DNA regulatory elements. In a species with a large genome, such as maize, many TEs interspersed with genes create opportunities for significant allelic variation due to TE presence/absence polymorphisms among individuals. We used information on putative regulatory elements in combination with knowledge about TE polymorphisms in maize to identify TE insertions that interrupt existing accessible chromatin regions (ACRs) in B73 as well as examples of polymorphic TEs that contain ACRs among four inbred lines of maize including B73, Mo17, W22, and PH207. The TE insertions in three other assembled maize genomes (Mo17, W22, or PH207) that interrupt ACRs that are present in the B73 genome can trigger changes to the chromatin, suggesting the potential for both genetic and epigenetic influences of these insertions. Nearly 20% of the ACRs located over 2 kb from the nearest gene are located within an annotated TE. These are regions of unmethylated DNA that show evidence for functional importance similar to ACRs that are not present within TEs. Using a large panel of maize genotypes, we tested if there is an association between the presence of TE insertions that interrupt, or carry, an ACR and the expression of nearby genes. While most TE polymorphisms are not associated with expression for nearby genes, the TEs that carry ACRs exhibit enrichment for being associated with higher expression of nearby genes, suggesting that these TEs may contribute novel regulatory elements. These analyses highlight the potential for a subset of TEs to rewire transcriptional responses in eukaryotic genomes. 
    more » « less
  5. Abstract Differential gene expression between environments often underlies phenotypic plasticity. However, environment-specific expression patterns are hypothesized to relax selection on genes, and thus limit plasticity evolution. We collated over 27 terabases of RNA-sequencing data on Arabidopsis thaliana from over 300 peer-reviewed studies and 200 treatment conditions to investigate this hypothesis. Consistent with relaxed selection, genes with more treatment-specific expression have higher levels of nucleotide diversity and divergence at nonsynonymous sites but lack stronger signals of positive selection. This result persisted even after controlling for expression level, gene length, GC content, the tissue specificity of expression, and technical variation between studies. Overall, our investigation supports the existence of a hypothesized trade-off between the environment specificity of a gene’s expression and the strength of selection on said gene in A. thaliana. Future studies should leverage multiple genome-scale datasets to tease apart the contributions of many variables in limiting plasticity evolution. 
    more » « less