skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Semantic-aware Workflow Construction and Analysis for Distributed Data Analytics Systems
Logging is a universal approach to recording important events in system workflows of distributed systems. Current log analysis tools ignore the semantic knowledge that is key to workflow construction and analysis. In addition, they focus on infrastructure-level distributed systems. Because of fundamental differences in log features, they are ineffective in distributed data analytics systems. This paper proposes IntelLog, a semantic-aware non-intrusive workflow reconstruction tool for distributed data analytics systems. It is capable of building hierarchical relationships between components and events from logs generated by the targeted systems with little or even no domain knowledge. Leveraging natural language processing, IntelLog automatically extracts and formats semantic information in each log message, including system events, identifiers, locality information, and metrics values. It builds a graph to represent the hierarchical relationship of components in the targeted system via nomenclature conventions. We implement IntelLog for Hadoop MapReduce, Spark and Tez. Evaluation results show that IntelLog provides a fine-grained view of the system workflows with semantics. It outperforms existing tools in automatically detecting anomalies caused by real-world problems, misconfigurations and system bugs. Users can query the formatted semantic knowledge to understand and further troubleshoot the systems.  more » « less
Award ID(s):
1816850
NSF-PAR ID:
10142536
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
HPDC '19: Proceedings of the 28th International Symposium on High-Performance Parallel and Distributed Computing, ACM
Page Range / eLocation ID:
255 to 266
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Logging is a universal approach to recording important events in system workflows of distributed systems. Current log analysis tools ignore the semantic knowledge that is key to workflow construction and analysis. In addition, they focus on infrastructure-level distributed systems. Because of fundamental differences in log features, they are ineffective in distributed data analytics systems. This paper proposes IntelLog, a semantic-aware non-intrusive workflow reconstruction tool for distributed data analytics systems. It is capable of building hierarchical relationships between components and events from logs generated by the targeted systems with little or even no domain knowledge. Leveraging natural language processing, IntelLog automatically extracts and formats semantic information in each log message, including system events, identifiers, locality information, and metrics values. It builds a graph to represent the hierarchical relationship of components in the targeted system via nomenclature conventions. We implement IntelLog for Hadoop MapReduce, Spark and Tez. Evaluation results show that IntelLog provides a fine-grained view of the system workflows with semantics. It outperforms existing tools in automatically detecting anomalies caused by real-world problems, misconfigurations and system bugs. Users can query the formatted semantic knowledge to understand and further troubleshoot the systems. 
    more » « less
  2. Workflow reconstruction through logs is crucial for troubleshooting targeted distributed systems. It is also challenging to extract enough information from logs and keep a concise view, which makes manual log analysis hard to practice. However, currently popular tools rely on identifier-based log parsing, leaving a large amount of workflow information unexploited. In this paper, we propose a log extraction approach NLog, which utilizes a natural language processing based approach to obtain the key information from log messages and identify the same object in logs generated by different statements without any domain knowledge. We propose to use keyed message, a new log storage structure to store the parsed logs. We implement NLog and apply it to distributed data analytics frameworks Spark and MapReduce. Evaluation results show that NLog can accurately identify the objects in log messages even without explicit identifiers. By using keyed messages, users can have a concise as well as flexible view of the workflows. 
    more » « less
  3. null (Ed.)
    Troubleshooting a distributed system can be incredibly difficult. It is rarely feasible to expect a user to know the fine-grained interactions between their system and the environment configuration of each machine used in the system. Because of this, work can grind to a halt when a seemingly trivial detail changes. To address this, there is a plethora of state-of-the-art log analysis tools, debuggers, and visualization suites. However, a user may be executing in an open distributed system where the placement of their components are not known before runtime. This makes the process of tracking debug logs almost as difficult as troubleshooting the failures these logs have recorded because the location of those logs is usually not transparent to the user (and by association the troubleshooting tools they are using). We present TLQ, a framework designed from first principles for log discovery to enable troubleshooting of open distributed systems. TLQ consists of a querying client and a set of servers which track relevant debug logs spread across an open distributed system. Through a series of examples, we demonstrate how TLQ enables users to discover the locations of their system’s debug logs and in turn use well-defined troubleshooting tools upon those logs in a distributed fashion. Both of these tasks were previously impractical to ask of an open distributed system without significant a priori knowledge. We also concretely verify TLQ’s effectiveness by way of a production system: a biodiversity scientific workflow. We note the potential storage and performance overheads of TLQ compared to a centralized, closed system approach. 
    more » « less
  4. null (Ed.)
    Parallel filesystems (PFSs) are one of the most critical high-availability components of High Performance Computing (HPC) systems. Most HPC workloads are dependent on the availability of a POSIX compliant parallel filesystem that provides a globally consistent view of data to all compute nodes of a HPC system. Because of this central role, failure or performance degradation events in the PFS can impact every user of a HPC resource. There is typically insufficient information available to users and even many HPC staff to identify the causes of these PFS events, impeding the implementation of timely and targeted remedies to PFS issues. The relevant information is distributed across PFS servers; however, access to these servers is highly restricted due to the sensitive role they play in the operations of a HPC system. Additionally, the information is challenging to aggregate and interpret, relegating diagnosis and treatment of PFS issues to a select few experts with privileged system access. To democratize this information, we are developing an open-source and user-facing Parallel FileSystem TRacing and Analysis SErvice (PFSTRASE) that analyzes the requisite data to establish causal relationships between PFS activity and events detrimental to stability and performance. We are implementing the service for the open-source Lustre filesystem, which is the most commonly used PFS at large-scale HPC sites. Server loads for specific PFS I/O operations (IOPs) will be measured and aggregated by the service to automatically estimate an effective load generated by every client, job, and user. The infrastructure provides a realtime, user accessible text-based interface and a publicly accessible web interface displaying both real-time and historical data. To democratize this information, we are developing an open-source and user-facing Parallel FileSystem TRacing and Analysis SErvice (PFSTRASE) that analyzes the requisite data to establish causal relationships between PFS activity and events detrimental to stability and performance. We are implementing the service for the open-source Lustre filesystem, which is the most commonly used PFS at large-scale HPC sites. Server loads for specific PFS I/O operations (IOPs) will be measured and aggregated by the service to automatically estimate an effective load generated by every client, job, and user. The infrastructure provides a realtime, user accessible text-based interface and a publicly accessible web interface displaying both real-time and historical data. 
    more » « less
  5. null (Ed.)
    Very high spatial resolution commercial satellite imagery can inform observation, mapping, and documentation of micro-topographic transitions across large tundra regions. The bridging of fine-scale field studies with pan-Arctic system assessments has until now been constrained by a lack of overlap in spatial resolution and geographical coverage. This likely introduced biases in climate impacts on, and feedback from the Arctic region to the global climate system. The central objective of this exploratory study is to develop an object-based image analysis workflow to automatically extract ice-wedge polygon troughs from very high spatial resolution commercial satellite imagery. We employed a systematic experiment to understand the degree of interoperability of knowledge-based workflows across distinct tundra vegetation units—sedge tundra and tussock tundra—focusing on the same semantic class. In our multi-scale trough modelling workflow, we coupled mathematical morphological filtering with a segmentation process to enhance the quality of image object candidates and classification accuracies. Employment of the master ruleset on sedge tundra reported classification accuracies of correctness of 0.99, completeness of 0.87, and F1 score of 0.92. When the master ruleset was applied to tussock tundra without any adaptations, classification accuracies remained promising while reporting correctness of 0.87, completeness of 0.77, and an F1 score of 0.81. Overall, results suggest that the object-based image analysis-based trough modelling workflow exhibits substantial interoperability across the terrain while producing promising classification accuracies. From an Arctic earth science perspective, the mapped troughs combined with the ArcticDEM can allow hydrological assessments of lateral connectivity of the rapidly changing Arctic tundra landscape, and repeated mapping can allow us to track fine-scale changes across large regions and that has potentially major implications on larger riverine systems. 
    more » « less