skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Semiparametric estimation of structural failure time models in continuous-time processes
Summary Structural failure time models are causal models for estimating the effect of time-varying treatments on a survival outcome. G-estimation and artificial censoring have been proposed for estimating the model parameters in the presence of time-dependent confounding and administrative censoring. However, most existing methods require manually pre-processing data into regularly spaced data, which may invalidate the subsequent causal analysis. Moreover, the computation and inference are challenging due to the nonsmoothness of artificial censoring. We propose a class of continuous-time structural failure time models that respects the continuous-time nature of the underlying data processes. Under a martingale condition of no unmeasured confounding, we show that the model parameters are identifiable from a potentially infinite number of estimating equations. Using the semiparametric efficiency theory, we derive the first semiparametric doubly robust estimators, which are consistent if the model for the treatment process or the failure time model, but not necessarily both, is correctly specified. Moreover, we propose using inverse probability of censoring weighting to deal with dependent censoring. In contrast to artificial censoring, our weighting strategy does not introduce nonsmoothness in estimation and ensures that resampling methods can be used for inference.  more » « less
Award ID(s):
1811245
PAR ID:
10142614
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Biometrika
ISSN:
0006-3444
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Structural nested mean models (SNMMs) are useful for causal inference of treatment effects in longitudinal observational studies. Most existing works assume that the data are collected at prefixed time points for all subjects, which, however, may be restrictive in practice. To deal with irregularly spaced observations, we assume a class of continuous‐time SNMMs and a martingale condition of no unmeasured confounding (NUC) to identify the causal parameters. We develop the semiparametric efficiency theory and locally efficient estimators for continuous‐time SNMMs. This task is nontrivial due to the restrictions from the NUC assumption imposed on the SNMM parameter. In the presence of ignorable censoring, we show that the complete‐case estimator is optimal among a class of weighting estimators including the inverse probability of censoring weighting estimator, and it achieves a double robustness feature in that it is consistent if at least one of the models for the potential outcome mean function and the treatment process is correctly specified. The new framework allows us to conduct causal analysis respecting the underlying continuous‐time nature of data processes. The simulation study shows that the proposed estimator outperforms existing approaches. We estimate the effect of time to initiate highly active antiretroviral therapy on the CD4 count at year 2 from the observational Acute Infection and Early Disease Research Program database. 
    more » « less
  2. Failure time data subject to various types of censoring commonly arise in epidemiological and biomedical studies. Motivated by an AIDS clinical trial, we consider regression analysis of failure time data that include exact and left‐, interval‐, and/or right‐censored observations, which are often referred to as partly interval‐censored failure time data. We study the effects of potentially time‐dependent covariates on partly interval‐censored failure time via a class of semiparametric transformation models that includes the widely used proportional hazards model and the proportional odds model as special cases. We propose an EM algorithm for the nonparametric maximum likelihood estimation and show that it unifies some existing approaches developed for traditional right‐censored data or purely interval‐censored data. In particular, the proposed method reduces to the partial likelihood approach in the case of right‐censored data under the proportional hazards model. We establish that the resulting estimator is consistent and asymptotically normal. In addition, we investigate the proposed method via simulation studies and apply it to the motivating AIDS clinical trial. 
    more » « less
  3. Abstract Marginal structural models (MSMs) can be used to estimate the causal effect of a potentially time-varying treatment in the presence of time-dependent confounding via weighted regression. The standard approach of using inverse probability of treatment weighting (IPTW) can be sensitive to model misspecification and lead to high-variance estimates due to extreme weights. Various methods have been proposed to partially address this, including covariate balancing propensity score (CBPS) to mitigate treatment model misspecification, and truncation and stabilized-IPTW (sIPTW) to temper extreme weights. In this article, we present kernel optimal weighting (KOW), a convex-optimization-based approach that finds weights for fitting the MSMs that flexibly balance time-dependent confounders while simultaneously penalizing extreme weights, directly addressing the above limitations. We further extend KOW to control for informative censoring. We evaluate the performance of KOW in a simulation study, comparing it with IPTW, sIPTW, and CBPS. We demonstrate the use of KOW in studying the effect of treatment initiation on time-to-death among people living with human immunodeficiency virus and the effect of negative advertising on elections in the United States. 
    more » « less
  4. For large observational studies lacking a control group (unlike randomized controlled trials, RCT), propensity scores (PS) are often the method of choice to account for pre-treatment confounding in baseline characteristics, and thereby avoid substantial bias in treatment estimation. A vast majority of PS techniques focus on average treatment effect estimation, without any clear consensus on how to account for confounders, especially in a multiple treatment setting. Furthermore, for time-to event outcomes, the analytical framework is further complicated in presence of high censoring rates (sometimes, due to non-susceptibility of study units to a disease), imbalance between treatment groups, and clustered nature of the data (where, survival outcomes appear in groups). Motivated by a right-censored kidney transplantation dataset derived from the United Network of Organ Sharing (UNOS), we investigate and compare two recent promising PS procedures, (a) the generalized boosted model (GBM), and (b) the covariate-balancing propensity score (CBPS), in an attempt to decouple the causal effects of treatments (here, study subgroups, such as hepatitis C virus (HCV) positive/negative donors, and positive/negative recipients) on time to death of kidney recipients due to kidney failure, post transplantation. For estimation, we employ a 2-step procedure which addresses various complexities observed in the UNOS database within a unified paradigm. First, to adjust for the large number of confounders on the multiple sub-groups, we fit multinomial PS models via procedures (a) and (b). In the next stage, the estimated PS is incorporated into the likelihood of a semi-parametric cure rate Cox proportional hazard frailty model via inverse probability of treatment weighting, adjusted for multi-center clustering and excess censoring, Our data analysis reveals a more informative and superior performance of the full model in terms of treatment effect estimation, over sub-models that relaxes the various features of the event time dataset. 
    more » « less
  5. ABSTRACT Breast cancer patients may experience relapse or death after surgery during the follow‐up period, leading to dependent censoring of relapse. This phenomenon, known as semi‐competing risk, imposes challenges in analyzing treatment effects on breast cancer and necessitates advanced statistical tools for unbiased analysis. Despite progress in estimation and inference within semi‐competing risks regression, its application to causal inference is still in its early stages. This article aims to propose a frequentist and semi‐parametric framework based on copula models that can facilitate valid causal inference, net quantity estimation and interpretation, and sensitivity analysis for unmeasured factors under right‐censored semi‐competing risks data. We also propose novel procedures to enhance parameter estimation and its applicability in practice. After that, we apply the proposed framework to a breast cancer study and detect the time‐varying causal effects of hormone‐ and radio‐treatments on patients' relapse and overall survival. Moreover, extensive numerical evaluations demonstrate the method's feasibility, highlighting minimal estimation bias and reliable statistical inference. 
    more » « less