The rise of mobile multi-agent robotic platforms is outpacing control paradigms for tasks that require operating in complex, realistic environments. To leverage inertial, energetic, and cost bene fits of small-scale robots, critical future applications may depend on coordinating large numbers of agents with minimal onboard sensing and communication resources. In this article, we present the perspective that adaptive and resilient autonomous control of swarms of minimal agents might follow from a direct analogy with the neural circuits of spatial cognition in rodents. We focus on spatial neurons such as place cells found in the hippocampus. Two major emergent hippocampal phenomena, self-stabilizing attractor maps and temporal organization by shared oscillations, reveal theoretical solutions for decentralized self-organization and distributed communication in the brain. We consider that autonomous swarms of minimal agents with low-bandwidth communication are analogous to brain circuits of oscillatory neurons with spike-based propagation of information. The resulting notion of `neural swarm control' has the potential to be scalable, adaptive to dynamic environments, and resilient to communication failures and agent attrition. We illustrate a path toward extending this analogy into multi-agent systems applications and discuss implications for advances in decentralized swarm control.
more »
« less
Cognitive swarming in complex environments with attractor dynamics and oscillatory computing
Neurobiological theories of spatial cognition developed with respect to recording data from relatively small and/or simplistic environments compared to animals’ natural habitats. It has been unclear how to extend theoretical models to large or complex spaces. Complementarily, in autonomous systems technology, applications have been growing for distributed control methods that scale to large numbers of low-footprint mobile platforms. Animals and many-robot groups must solve common problems of navigating complex and uncertain environments. Here, we introduce the NeuroSwarms control framework to investigate whether adaptive, autonomous swarm control of minimal artificial agents can be achieved by direct analogy to neural circuits of rodent spatial cognition. NeuroSwarms analogizes agents to neurons and swarming groups to recurrent networks. We implemented neuron-like agent interactions in which mutually visible agents operate as if they were reciprocally connected place cells in an attractor network. We attributed a phase state to agents to enable patterns of oscillatory synchronization similar to hippocampal models of theta-rhythmic (5–12 Hz) sequence generation. We demonstrate that multi-agent swarming and reward-approach dynamics can be expressed as a mobile form of Hebbian learning and that NeuroSwarms supports a single-entity paradigm that directly informs theoretical models of animal cognition. We present emergent behaviors including phase-organized rings and trajectory sequences that interact with environmental cues and geometry in large, fragmented mazes. Thus, NeuroSwarms is a model artificial spatial system that integrates autonomous control and theoretical neuroscience to potentially uncover common principles to advance both domains.
more »
« less
- Award ID(s):
- 1835279
- PAR ID:
- 10142672
- Date Published:
- Journal Name:
- Biological Cybernetics
- ISSN:
- 0340-1200
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We introduce a novel tool for designing a swarming behavior model for a set of virtual agents to automatically capture an initially unknown indoor architectural environment. Our key idea is to use an output-driven optimization to create targeted swarming behavior. The input to our model is a simple rectangular proxy of the target area and desired acquisition indicator values. The final outputs are the parameters for a swarming behavior model that is autonomous and decentralized, uses only local exploration, and is robust to agent failure. We show and compare the swarming performance in several simulated environments of up to several hundred square meters, 100 agents, and under various conditions.more » « less
-
In the NeuroSwarms framework, a team including researchers from the Johns Hopkins University Applied Physics Laboratory (APL) and the Johns Hopkins University School of Medicine (JHM) applied key theoretical concepts from neuroscience to models of distributed multi-agent autonomous systems and found that complex swarming behaviors arise from simple learning rules used by the mammalian brain.more » « less
-
Large Language Models (LLMs) have achieved remarkable success across a wide array of tasks. Due to the impressive planning and reasoning abilities of LLMs, they have been used as autonomous agents to do many tasks automatically. Recently, based on the development of using one LLM as a single planning or decision-making agent, LLM-based multi-agent systems have achieved considerable progress in complex problem-solving and world simulation. To provide the community with an overview of this dynamic field, we present this survey to offer an in-depth discussion on the essential aspects of multi-agent systems based on LLMs, as well as the challenges. Our goal is for readers to gain substantial insights on the following questions: What domains and environments do LLM-based multi-agents simulate? How are these agents profiled and how do they communicate? What mechanisms contribute to the growth of agents' capacities? For those interested in delving into this field of study, we also summarize the commonly used datasets or benchmarks for them to have convenient access. To keep researchers updated on the latest studies, we maintain an open-source GitHub repository, dedicated to outlining the research on LLM-based multi-agent systems.more » « less
-
Faíña, A; Risi, S; Medvet, E; Stoy, K; Chan, B; Miras, K; Zahadat, P; Grbic, D; Nadizar, G (Ed.)This paper investigates the capability of embodied agents to perform a sequential counting task. Drawing inspiration from honeybee studies, we present a minimal numerical cognition task wherein an agent navigates a 1D world marked with landmarks to locate a previously encountered food source. We evolved embodied artificial agents controlled by dynamical recurrent neural networks to be capable of associating a food reward with encountering a number of landmarks sequentially. To eliminate the possibility of the evolved agents relying on distance to locate the target landmark, we varied the positions of the landmarks across trials. Our experiments demonstrate that embodied agents equipped with relatively small neural networks can accurately enumerate and remember up to five landmarks when encountered sequentially. Counter to the intuitive notion that numerical cognition is a complex, higher cortical function, our findings support the idea that numerical discrimination can be achieved in relatively compact neural circuits.more » « less