Neurobiological theories of spatial cognition developed with respect to recording data from relatively small and/or simplistic environments compared to animals’ natural habitats. It has been unclear how to extend theoretical models to large or complex spaces. Complementarily, in autonomous systems technology, applications have been growing for distributed control methods that scale to large numbers of low-footprint mobile platforms. Animals and many-robot groups must solve common problems of navigating complex and uncertain environments. Here, we introduce the NeuroSwarms control framework to investigate whether adaptive, autonomous swarm control of minimal artificial agents can be achieved by direct analogy to neural circuits of rodent spatial cognition. NeuroSwarms analogizes agents to neurons and swarming groups to recurrent networks. We implemented neuron-like agent interactions in which mutually visible agents operate as if they were reciprocally connected place cells in an attractor network. We attributed a phase state to agents to enable patterns of oscillatory synchronization similar to hippocampal models of theta-rhythmic (5–12 Hz) sequence generation. We demonstrate that multi-agent swarming and reward-approach dynamics can be expressed as a mobile form of Hebbian learning and that NeuroSwarms supports a single-entity paradigm that directly informs theoretical models of animal cognition. We present emergent behaviors including phase-organized rings and trajectory sequences that interact with environmental cues and geometry in large, fragmented mazes. Thus, NeuroSwarms is a model artificial spatial system that integrates autonomous control and theoretical neuroscience to potentially uncover common principles to advance both domains.
more »
« less
Cognitive swarming: An approach from the theoretical neuroscience of hippocampal function
The rise of mobile multi-agent robotic platforms is outpacing control paradigms for tasks that require operating in complex, realistic environments. To leverage inertial, energetic, and cost bene fits of small-scale robots, critical future applications may depend on coordinating large numbers of agents with minimal onboard sensing and communication resources. In this article, we present the perspective that adaptive and resilient autonomous control of swarms of minimal agents might follow from a direct analogy with the neural circuits of spatial cognition in rodents. We focus on spatial neurons such as place cells found in the hippocampus. Two major emergent hippocampal phenomena, self-stabilizing attractor maps and temporal organization by shared oscillations, reveal theoretical solutions for decentralized self-organization and distributed communication in the brain. We consider that autonomous swarms of minimal agents with low-bandwidth communication are analogous to brain circuits of oscillatory neurons with spike-based propagation of information. The resulting notion of `neural swarm control' has the potential to be scalable, adaptive to dynamic environments, and resilient to communication failures and agent attrition. We illustrate a path toward extending this analogy into multi-agent systems applications and discuss implications for advances in decentralized swarm control.
more »
« less
- Award ID(s):
- 1835279
- PAR ID:
- 10094247
- Date Published:
- Journal Name:
- Proceedings of SPIE
- Volume:
- 10982
- Issue:
- 109822D
- Page Range / eLocation ID:
- 1-10
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Deploying decentralized control strategies for outdoor multi-agent Uncrewed Aircraft Systems (UASs) is challenging due to timing variations, packet loss, and computing resource limitations. In this work we address robustness to these conditions through a novel co-regulated control strategy that varies the periodicity of control inputs and communication with other agents. Co-regulation is applied to a decentralized hierarchical controller consisting of a global component governing inter-group coordination to multiple targets while a local component governs intra-group coordination of the agents as they progress to the target of interest. The control gains are “gain scheduled” according to current conditions while a cyber controller schedules the control and communication tasks for execution based on swarm performance. The control gains are found via reinforcement learning and the entire algorithm is deployed on a swarm consisting of 7 custom agents. Our results show the impact of rethinking swarming algorithms with computation and communication resource limitations in mind and indicate we can provide exceptional swarm control utilizing fewer resources while also improving the quality of service for an onboard, anytime collision avoidance algorithm.more » « less
-
In this paper, a density-driven multi-agent swarm control problem is investigated. Robot swarms can provide a great benefit, especially for applications where a single robot cannot effectively achieve a given task. For large spatial-scale applications such as search and rescue, environmental monitoring, and surveillance, a new multi-agent swarm control strategy is necessary because of physical constraints including a robot number and operation time. This paper provides a novel density-driven swarm control strategy for multi-agent systems based on the Optimal Transport theory, to cover a spacious domain with limited resources. In such a scenario, \textit{efficiency} will likely be a key point in achieving an efficient robot swarm behavior rather than uniform coverage that might be infeasible. With the given reference density, pre-constructed from available information, the proposed swarm control method will drive the multi-agent system such that their time-averaged behavior becomes similar to the reference density. In this way, density-driven swarm control will enable the multiple agents to spend most of their time on high-priority regions that are reflected in the reference density, leading to efficiency. To protect the agents from collisions, the Artificial Potential Field method is employed and combined with the proposed density-driven swarm control scheme. Simulations are conducted to validate density-driven swarm control as well as to test collision avoidance. Also, the swarm performance is analyzed by varying the agent number in the simulation.more » « less
-
null (Ed.)Decentralized computational swarms have been used to simulate the workings of insect colonies or hives, often utilizing a response threshold model which underlies agent interaction with dynamic environmental stimuli. Here, we propose a logistics resupply problem in which agents must select from multiple incoming scheduled tasks that generate competing resource demands for workers. This work diverges from previous attempts toward analyzing swarm behaviors by examining relative amounts of stress placed on a multi-agent system in conjunction with two mechanisms of response: variable threshold distribution, or duration level. Further, we demonstrate changes to the general swarm performance’s dependence on paired desynchronization type and schedule design, as the result of varied swarm conditions.more » « less
-
null (Ed.)In self-organizing multi-agent systems, inter-agent variation is known to improve swarm performance significantly. Response duration, the amount of time that an agent spends on a task, has been proposed as a form of inter-agent variation that may be beneficial. In the biological literature, variability in agent response duration in natural swarms for desynchronizing agent actions has been discussed for some time. This form of variation, however, is not well understood in artificial swarms. In this work, we explore inter-agent variation in response duration as a desynchronization technique. We find that variation in response duration does desynchronize agent behaviors and does improve swarm performance on a two-dimensional tracking problem in which the swarm must push a tracker, staying as close as possible to a moving target. By preventing agents from reacting identically to task stimuli and keeping some agents on task longer, response duration helps smooth the swarm’s path and allows it to better track the target into path features such as corners.more » « less