skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An η 3 ‐Bound Allyl Ligand on Magnesium in a Mechanochemically Generated Mg/K Allyl Complex
Abstract Milling two equivalents of K[1,3‐(SiMe3)2C3H3] (=K[A′]) with MgX2(X=Cl, Br) produces the allyl complex [K2MgA′4] (1). Crystals grown from toluene are of the solvated species [((η6‐tol)K)2MgA′4] ([1⋅2(tol)]), a trimetallic monomer with both bridging and terminal (η1) allyl ligands. When recrystallized from hexanes, the unsolvated1forms a 2D coordination polymer, in which the Mg is surrounded by three allyl ligands. The C−C bond lengths differ by only 0.028 Å, indicating virtually complete electron delocalization. This is an unprecedented coordination mode for an allyl ligand bound to Mg. DFT calculations indicate that in isolation, an η3‐allyl configuration on Mg is energetically preferred over the η1‐ (σ‐bonded) arrangement, but the Mg must be in a low coordination environment for it to be experimentally realized. Methyl methacrylate is effectively polymerized by1, with activities that are comparable to K[A′] and greater than the homometallic magnesium complex [{MgA′2}2].  more » « less
Award ID(s):
1665327
PAR ID:
10142746
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
59
Issue:
24
ISSN:
1433-7851
Page Range / eLocation ID:
p. 9542-9548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Without solvents present, the often far‐from‐equilibrium environment in a mechanochemically driven synthesis can generate high‐energy, non‐stoichiometric products not observed from the same ratio of reagents used in solution. Ball milling 2 equiv. K[A’] (A’=[1,3‐(SiMe3)2C3H3]) with CaI2yields a non‐stoichiometric calciate, K[CaA’3], which initially forms a structure (1) likely containing a mixture of pi‐ and sigma‐bound allyl ligands. Dissolved in arenes, the compound rearranges over the course of several days to a structure (2) with only η3‐bound allyl ligands, and that can be crystallized as a coordination polymer. If dissolved in alkanes, however, the rearrangement of1to2occurs within minutes. The structures of1and2have been modeled with DFT calculations, and2initiates the anionic polymerization of methyl methacrylate and isoprene; for the latter, under the mildest conditions yet reported for a heavy Group 2 species (one‐atm pressure and room temperature). 
    more » « less
  2. Abstract The bonding in beryllocene, [BeCp2], took decades to establish, owing to its unexpected mixed hapticity structure (i.e., [Be(η5‐Cp)(η1‐Cp)]). Beryllium complexes containing the indenyl ligand, which is a close relative of the cyclopentadienyl anion, but which is also known to exhibit its own bonding peculiarities (e.g., facile η5⇄ η3shifts), have remained unknown. Standard metathetical approaches to their synthesis (e.g., with K[Ind′] + BeX2in an ether solvent) give rise to intractable oils from which nothing identifiable can be isolated. In contrast, mechanochemical preparation, involving the solvent‐free grinding of BeBr2and potassium indenides, leads to the production of discrete (indenyl)beryllium complexes, including [Be(C9H7)2] (1) and [Be{1,3‐(SiMe3)2C9H5}Br] (2). The former displays η51‐coordinated ligands in the solid state, but DFT calculations indicate that an η55‐conformation is less than 5 kcal mol−1higher in energy. 
    more » « less
  3. Abstract Exploration of the reduction chemistry of the 2,2’‐bipyridine (bipy) lanthanide metallocene complexes Cp*2LnCl(bipy) and Cp*2Ln(bipy) (Cp* = C5Me5) resulted in the isolation of a series of complexes with unusual composition and structure including complexes with a single Cp* ligand, multiple azide ligands, and bipy ligands with close parallel orientations. These results not only reveal new structural types, but they also show the diverse chemistry displayed by this redox‐active platform. Treatment of Cp*2NdCl(bipy) with excess KC8resulted in the formation of the mono‐Cp* Nd(III) complex, [K(crypt)]2[Cp*Nd(bipy)2],1, as well as [K(crypt)][Cp*2NdCl2],2, and the previously reported [K(crypt)][Cp*2Nd(bipy)]. A mono‐Cp* Lu(III) complex, Cp*Lu(bipy)2,3, was also found in an attempt to make Cp*2Lu(bipy) from LuCl3, 2 equiv. of KCp*, bipy, and K/KI. Surprisingly, the (bipy)1−ligands in neighboring molecules in the structure of3are oriented in a parallel fashion with intermolecular C⋅⋅⋅C distances of 3.289(4) Å, which are shorter than the sum of van der Waals radii of two carbon atoms, 3.4 Å. Another product with one Cp* ligand per lanthanide was isolated from the reaction of [K(crypt)][Cp*2Eu(bipy)] with azobenzene, which afforded the dimeric Eu(II) complex, [K(crypt)]2[Cp*Eu(THF)(PhNNPh)]2,4. Attempts to make4from the reaction between Cp*2Eu(THF)2and a reduced azobenzene anion generated instead the mixed‐valent Eu(III)/Eu(II) complex, [K(crypt)][Cp*Eu(THF)(PhNNPh)]2,5, which allows direct comparison with the bimetallic Eu(II) complex4. Mono‐Cp* complexes of Yb(III) are obtained from reactions of the Yb(II) complex, [K(crypt)][Cp*2Yb(bipy)], with trimethylsilylazide, which afforded the tetra‐azido [K(crypt)]2[Cp*Yb(N3)4],6, or the di‐azido complex [K(crypt)]2[Cp*Yb(N3)2(bipy)],7 a, depending on the reaction stoichiometry. A mono‐Cp* Yb(III) complex is also isolated from reaction of [K(crypt)][Cp*2Yb(bipy)] with elemental sulfur which forms the mixed polysulfido Yb(III) complex [K(crypt)]2[Cp*Yb(S4)(S5)],8 a. In contrast to these reactions that form mono‐Cp* products, reduction of Cp*2Yb(bipy) with 1 equiv. of KC8in the presence of 18‐crown‐6 resulted in the complete loss of Cp* ligands and the formation of [K(18‐c‐6)(THF)][Yb(bipy)4],9. The (bipy)1−ligands of9are arranged in a parallel orientation, as observed in the structure of3, except in this case this interaction is intramolecular and involves pairs of ligands bound to the same Yb atom. Attempts to reduce further the Sm(II) (bipy)1−complex, Cp*2Sm(bipy) with 2 equiv. of KC8in the presence of excess 18‐crown‐6 led to the isolation of a Sm(III) salt of (bipy)2−with an inverse sandwich Cp* counter‐cation and a co‐crystallized K(18‐c‐6)Cp* unit, [K2(18‐c‐6)2Cp*]2[Cp*2Sm(bipy)]2 ⋅ [K(18‐c‐6)Cp*],10. 
    more » « less
  4. Abstract The catalytic one‐bond isomerization (transposition) of 1‐alkenes is an emerging approach toZ‐2‐alkenes. Design of more selective catalysts would benefit from a mechanistic understanding of factors controllingZselectivity. We propose here a reaction pathway forcis‐Mo(CO)4(PCy3)(piperidine) (3), a precatalyst that shows highZselectivity for transposition of alpha olefins (e. g., 1‐octene to 2‐octene, 18 : 1Z : Eat 74 % conversion). Computational modeling of reaction pathways and isotopic labeling suggests the isomerization takes place via an allyl (1,3‐hydride shift) pathway, where oxidative addition offac‐(CO)3Mo(PCy3)(η2‐alkene) is followed by hydride migration from one position (cisto allyl C3carbon) to another (cisto allyl C1carbon) via hydride/CO exchanges. Calculated barriers for the hydride migration pathway are lower than explored alternative mechanisms (e. g., change of allyl hapticity, allyl rotation). To our knowledge, this is the first study to propose such a hydride migration in alkene isomerization. 
    more » « less
  5. Abstract The synthesis and characterization of the15N‐labeled analogue of the mitochondrial calcium uptake inhibitor [Cl(NH3)4Ru(μ‐N)Ru(NH3)4Cl]3+(Ru265) bearing [15N]NH3ligands is reported. Using [1H,15N] HSQC NMR spectroscopy, the rate constants for the axial chlorido ligand aquation of [15N]Ru265 in pH 7.4 buffer at 25 °C were found to bek1=(3.43±0.03)×10−4 s−1andk2=(4.03±0.09)×10−3 s−1. The reactivity of [15N]Ru265 towards biologically relevant small molecules was also assessed via this method, revealing that this complex can form coordination bonds to anionic oxygen and sulfur donors. Time‐based studies on these ligand‐binding reactions reveal this process to be slow relative to the time required for the complex to inhibit mitochondrial calcium uptake, suggesting that hydrogen‐bonding interactions, rather than the formation of coordination bonds, may play a more significant role in mediating the inhibitory properties of this complex. 
    more » « less